Welcome!

@CloudExpo Authors: John Basso, Elizabeth White, Liz McMillan, Pat Romanski, Cloud Best Practices Network

Related Topics: @CloudExpo, Microservices Expo

@CloudExpo: Article

Next-Generation Content Delivery: Cloud Acceleration

Cloud acceleration essentially does the same thing for dynamic content that a CDN does for static content

It would be an understatement to say that this past decade belongs to the Internet. Starting primarily as a research tool, the Internet has now infiltrated every aspect of life - there is very little today that users do not, or cannot, do online. Moreover, new ways to leverage the Internet to personal and professional advantage arise every day.

Evidently, all this progress has had an insidious side-effect - user expectations regarding website performance have sky-rocketed over the years. People expect websites, video and audio to load faster than ever before; otherwise, they lose interest and go to other websites. In fact, research firms have ample findings to support this correlation. A 2009 ResearchLink survey found that 26 percent of respondents would move to a competitor's website if a vendor's website failed to perform, resulting in immediate revenue loss of 26 percent and a future loss of 15 percent. Forrester Research also found that 36 percent of unique visitors to a website will leave it if it fails to load within the first three seconds. Three seconds - that's not a lot of time. Yet, user expectations are warranted, seeing how much progress content delivery technology has made in the past few years. Couple these user demands with an architecture that is not fit to deliver the kind of performance they expect, and what we have on our hands is a big problem for companies whose business thrives on web content and e-commerce.

But as always, the IT people of a decade ago conferred and found a solution. Content Delivery Network (CDN) companies invested a lot of time and money into a solution that is still being used today. The solution was to store content as close to the end user as possible, a technique known as edge caching. It allows users to access cached versions of the web or applications for faster, easier access. In addition to edge caching, some of the more sophisticated CDNs have gone one step further and developed unique algorithms and massive distributed networks that would help them proactively identify trouble spots over the public Internet, and reroute content around them. While this additional technique allows websites to deliver asymmetrical traffic a little more efficiently, applications like streaming video and audio, and even software downloads, are still cached at the edge of the network despite this routing technique.

Clearly, this technique is effective for content up to a certain size, but it is not enough to meet the high throughput demands of today's growing business reliance on data and larger residential Internet connections over great distances. Edge caching is best suited for static content, and not the dynamic, rich content we see today, since static content doesn't change very often and can easily be stored on low-cost disks in a multitude of locations around the Internet. Even if it does change fairly frequently, it is easy to script these updates to ensure that copies sitting at the edge are up-to-date. But the reality is that today, in 2010, static content forms an increasingly smaller percentage of all the content that requires transfer. The need of the hour is to be able to transfer dynamic content with the speed and ease - and it is yet unfulfilled. CDNs and their edge-caching capabilities are not nearly as successful with dynamic content since, by its very nature, it cannot simply be thrown on to the edge of a network due to inherent size and constituency. The character of dynamic content dictates that while it may be live at this moment, it may not exist two seconds from now. What's more, content that falls under this category includes most of what we use today: VoIP, FTP, live video and so on.

The question then remains: How do content providers ensure that end users (both business and consumers) experience the same ease of access they did a decade ago, but with the dynamic content they want to transfer today?

Enter the CDN's newer, more sophisticated cousin - cloud acceleration - which does what CDNs do, but faster and more able to deal with dynamic content. Cloud acceleration is best suited for dynamic content because it does not rely on edge caching - in fact, it works best without edge caching. In addition, it is more cost-effective as users are not paying for a decade's worth of infrastructure designed and built-out to enhance edge-caching capabilities. And last, but not least, it can fight common Internet problems, not only by working (routing) around them, but by actually fixing the core problem associated with long distance networks altogether. There's definitely something to be said for a solution that addresses the real issue, performs better, costs less and results in happy website visitors and increased revenues.

But how does cloud acceleration work its magic in the first place?

For starters, as previously mentioned, cloud acceleration doesn't rely on edge caching. Instead, it optimizes the entire delivery path, over the network managed by the service provider. Content is therefore delivered directly from origin servers to the end user, at the same level of performance as if they were in the same building. How is that better? For one, the most significant and important portion of the delivery path is surprisingly not the public Internet, but rather a high-performance, private, 100 percent optical network designed for speed. The cloud acceleration service provider is in full control of traffic and congestion on the network, and therefore controls Quality of Service (QoS). Of course, that also adds an element of security to the entire journey undertaken by the data. But most important, in this context, is the fact that cloud acceleration providers no longer have to rely on third-party Internet providers to work around common Internet problems such as latency, jitter and packet loss using algorithmic rerouting calculations common to CDNs. They are now in the position to actually fix them.

For more clarity, let's revisit how CDNs function. We can logically break it down into three distinct "miles" that cover the path between the content origin and the end user requesting it. The first mile is the distance between the origin server and a backbone - e.g., a T1, DSx, OCx or Ethernet connection to the Internet. The middle mile is the backbone that traverses the majority of the distance over one or more interconnected carrier backbones. Finally the last mile is the end-user's connection, such as a DSL, cable, wireless or other connection.

Simply put, CDNs that rely on caching frequently request objects at the edge of the network and are designed to avoid all three of these "miles" as much as possible. Because we know that an increase in distance always results in increased latency and often greater packet loss, it's best to place as many global object copies close to end users as possible. Well-designed caching CDNs do this fairly well by placing object caching servers within the network of the last mile provider. Other caching CDNs that do not have the luxury of placing servers within the network of the last mile provider will place them at key Internet peering points. While not as close to the end user, this is still a fairly effective approach to avoiding problems altogether.

The more sophisticated CDNs that also attempt to choose alternate Internet paths still suffer because they inherently rely on the Internet to get from point A to point B. Since they don't own the network, and therefore have no ultimate control over any "mile" of the route, they are at the mercy of the Internet. Providers that do own a network attempt to inject QoS by using multiprotocol label switching (MPLS), but are ultimately still at the mercy of the effects of latency, jitter and packet loss over longer distances.

With the CDN protocol established, how does a cloud acceleration service provider do things differently? First, it is important to understand that the overall objective is still similar to traditional CDNs: minimize the amount of public Internet utilized for moving content from the origin to the end user. The more Internet travel that can be avoided, the better the result in terms of end-user web performance. The goal of acceleration, however, is to accomplish this without caching at the edge, because optimally future dynamic content will not be cached. In fact, much of what we view today as dynamic content requires a persistent connection between the origin and the end user, which is achieved through the following three steps:

Step one involves opening a connection to the origin server over the first mile so the data stream can be brought onto the accelerated network as quickly as possible for the optimization process to begin. Installing an optional origin appliance starts the optimization process right at the origin datacenter, which gets the optimization going even sooner. The cloud acceleration service provider should have multiple origin capture nodes around the world, or at least close to the origin of its customer base. This, coupled with routing algorithms, will pull content onto the network as close to the origin as possible.

Step two involves hauling the content over the highly engineered private network. Because this middle mile is the longest portion of the trip, it is where the bulk of the data stream optimization happens. In addition to running a fully meshed MPLS-TE network at that origin capture node, infrastructure similar to a WAN optimizer will then open a tunnel across the service provider's entire private backbone to an identical device at the edge node near the end user. These devices constantly talk to each other, optimizing flow to ensure maximum throughput with window scaling, selective acknowledgement, round-trip measurement and congestion control. Packet-level forward error correction is an important feature to reconstitute lost packets at the edge node, avoiding delays that come with multiple-round-trip retransmission. Packets are also resequenced at the edge node using packet order correction to avoid retransmissions that occur when packets arrive out of order. Byte-level data deduplication eliminates retransmission of identical bytes that could otherwise be created at the edge, and multiplexing is utilized to minimize unnecessary chatter and further compress data as it traverses the tunnel.

Step three involves taking advantage of direct peering to eyeball networks, or the last mile, so the content can be dropped back on the Internet just before it reaches the end user. Because you can't expect users to install software applications or hardware appliances in their homes or on their devices, placing nodes close to the end user is critical to the maximum success of the process. Generally, if you can place the node from 5 to 10 ms from the end user, the experience will still feel like a LAN. Furthermore, the benefit of placing content inside the eyeball or last mile network ensures that delivery of content will not be affected by congestion at the ISP's Internet drain during peak usage, which is a common problem.

Through these three steps, cloud acceleration essentially does the same thing for dynamic content that a CDN does for static content - places it right in the user's lap. With a continuous open data stream equivalent to that of a super highway, it is now possible to optimize VoIP, live video, interactive e-media file transfer applications like FTP, CIFS, and NFS, and any new technologies and content that rely on rapid Internet performance in the future.

More Stories By Jonathan Hoppe

Jonathan Hoppe is President & CTO of Cloud Leverage. He has 15 years of technology experience in application development, Internet, networks and enterprise management systems. As president & CTO, he sets the long-term technology strategy of the company, acts as the technical liaison to partners, representatives and vendors, oversees large enterprise-level projects and is the chief architect for all e-business solutions, software applications and platforms. Additionally, Jonathan leads the architecture, operation, networking and telecom for each globally positioned data center as well as the Network Operations Center.

Prior to heading Cloud Leverage, Jonathan held various positions including president and CEO, CTO and senior applications developer for various e-business solution providers in Canada and the United States.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@CloudExpo Stories
In the world of DevOps there are ‘known good practices’ – aka ‘patterns’ – and ‘known bad practices’ – aka ‘anti-patterns.' Many of these patterns and anti-patterns have been developed from real world experience, especially by the early adopters of DevOps theory; but many are more feasible in theory than in practice, especially for more recent entrants to the DevOps scene. In this power panel at @DevOpsSummit at 18th Cloud Expo, moderated by DevOps Conference Chair Andi Mann, panelists will dis...
The demand for organizations to expand their infrastructure to multiple IT environments like the cloud, on-premise, mobile, bring your own device (BYOD) and the Internet of Things (IoT) continues to grow. As this hybrid infrastructure increases, the challenge to monitor the security of these systems increases in volume and complexity. In his session at 18th Cloud Expo, Stephen Coty, Chief Security Evangelist at Alert Logic, will show how properly configured and managed security architecture can...
SYS-CON Events announced today that Peak 10, Inc., a national IT infrastructure and cloud services provider, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Peak 10 provides reliable, tailored data center and network services, cloud and managed services. Its solutions are designed to scale and adapt to customers’ changing business needs, enabling them to lower costs, improve performance and focus inter...
There is an ever-growing explosion of new devices that are connected to the Internet using “cloud” solutions. This rapid growth is creating a massive new demand for efficient access to data. And it’s not just about connecting to that data anymore. This new demand is bringing new issues and challenges and it is important for companies to scale for the coming growth. And with that scaling comes the need for greater security, gathering and data analysis, storage, connectivity and, of course, the...
trust and privacy in their ecosystem. Assurance and protection of device identity, secure data encryption and authentication are the key security challenges organizations are trying to address when integrating IoT devices. This holds true for IoT applications in a wide range of industries, for example, healthcare, consumer devices, and manufacturing. In his session at @ThingsExpo, Lancen LaChance, vice president of product management, IoT solutions at GlobalSign, will teach IoT developers how t...
See storage differently! Storage performance problems have only gotten worse and harder to solve as applications have become largely virtualized and moved to a cloud-based infrastructure. Storage performance in a virtualized environment is not just about IOPS, it is about how well that potential performance is guaranteed to individual VMs for these apps as the number of VMs keep going up real time. In his session at 18th Cloud Expo, Dhiraj Sehgal, in product and marketing at Tintri, will discu...
So, you bought into the current machine learning craze and went on to collect millions/billions of records from this promising new data source. Now, what do you do with them? Too often, the abundance of data quickly turns into an abundance of problems. How do you extract that "magic essence" from your data without falling into the common pitfalls? In her session at @ThingsExpo, Natalia Ponomareva, Software Engineer at Google, will provide tips on how to be successful in large scale machine lear...
The IoTs will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, will demonstrate how to move beyond today's coding paradigm and share the must-have mindsets for removing complexity from the development proc...
Increasing IoT connectivity is forcing enterprises to find elegant solutions to organize and visualize all incoming data from these connected devices with re-configurable dashboard widgets to effectively allow rapid decision-making for everything from immediate actions in tactical situations to strategic analysis and reporting. In his session at 18th Cloud Expo, Shikhir Singh, Senior Developer Relations Manager at Sencha, will discuss how to create HTML5 dashboards that interact with IoT devic...
Artificial Intelligence has the potential to massively disrupt IoT. In his session at 18th Cloud Expo, AJ Abdallat, CEO of Beyond AI, will discuss what the five main drivers are in Artificial Intelligence that could shape the future of the Internet of Things. AJ Abdallat is CEO of Beyond AI. He has over 20 years of management experience in the fields of artificial intelligence, sensors, instruments, devices and software for telecommunications, life sciences, environmental monitoring, process...
Much of the value of DevOps comes from a (renewed) focus on measurement, sharing, and continuous feedback loops. In increasingly complex DevOps workflows and environments, and especially in larger, regulated, or more crystallized organizations, these core concepts become even more critical. In his session at @DevOpsSummit at 18th Cloud Expo, Andi Mann, Chief Technology Advocate at Splunk, will show how, by focusing on 'metrics that matter,' you can provide objective, transparent, and meaningfu...
You think you know what’s in your data. But do you? Most organizations are now aware of the business intelligence represented by their data. Data science stands to take this to a level you never thought of – literally. The techniques of data science, when used with the capabilities of Big Data technologies, can make connections you had not yet imagined, helping you discover new insights and ask new questions of your data. In his session at @ThingsExpo, Sarbjit Sarkaria, data science team lead ...
SYS-CON Events announced today that Ericsson has been named “Gold Sponsor” of SYS-CON's @ThingsExpo, which will take place on June 7-9, 2016, at the Javits Center in New York, New York. Ericsson is a world leader in the rapidly changing environment of communications technology – providing equipment, software and services to enable transformation through mobility. Some 40 percent of global mobile traffic runs through networks we have supplied. More than 1 billion subscribers around the world re...
In his session at 18th Cloud Expo, Sagi Brody, Chief Technology Officer at Webair Internet Development Inc., will focus on real world deployments of DDoS mitigation strategies in every layer of the network. He will give an overview of methods to prevent these attacks and best practices on how to provide protection in complex cloud platforms. He will also outline what we have found in our experience managing and running thousands of Linux and Unix managed service platforms and what specifically c...
Redis is not only the fastest database, but it has become the most popular among the new wave of applications running in containers. Redis speeds up just about every data interaction between your users or operational systems. In his session at 18th Cloud Expo, Dave Nielsen, Developer Relations at Redis Labs, will shares the functions and data structures used to solve everyday use cases that are driving Redis' popularity.
Many private cloud projects were built to deliver self-service access to development and test resources. While those clouds delivered faster access to resources, they lacked visibility, control and security needed for production deployments. In their session at 18th Cloud Expo, Steve Anderson, Product Manager at BMC Software, and Rick Lefort, Principal Technical Marketing Consultant at BMC Software, will discuss how a cloud designed for production operations not only helps accelerate developer...
The increasing popularity of the Internet of Things necessitates that our physical and cognitive relationship with wearable technology will change rapidly in the near future. This advent means logging has become a thing of the past. Before, it was on us to track our own data, but now that data is automatically available. What does this mean for mHealth and the "connected" body? In her session at @ThingsExpo, Lisa Calkins, CEO and co-founder of Amadeus Consulting, will discuss the impact of wea...
Whether your IoT service is connecting cars, homes, appliances, wearable, cameras or other devices, one question hangs in the balance – how do you actually make money from this service? The ability to turn your IoT service into profit requires the ability to create a monetization strategy that is flexible, scalable and working for you in real-time. It must be a transparent, smoothly implemented strategy that all stakeholders – from customers to the board – will be able to understand and comprehe...
Struggling to keep up with increasing application demand? Learn how Platform as a Service (PaaS) can streamline application development processes and make resource management easy.
Up until last year, enterprises that were looking into cloud services usually undertook a long-term pilot with one of the large cloud providers, running test and dev workloads in the cloud. With cloud’s transition to mainstream adoption in 2015, and with enterprises migrating more and more workloads into the cloud and in between public and private environments, the single-provider approach must be revisited. In his session at 18th Cloud Expo, Yoav Mor, multi-cloud solution evangelist at Cloudy...