Welcome!

@CloudExpo Authors: Pat Romanski, Liz McMillan, Elizabeth White, Yeshim Deniz, Zakia Bouachraoui

Related Topics: @CloudExpo, Open Source Cloud, Apache

@CloudExpo: Article

Hadoop and Realtime Cloud Computing

Architectures such as MapReduce and Hadoop are good for batch processing of big data, but bad for realtime processing

Big data is creating a massive disruption for the IT industry. Faced with exponentially growing data volumes in every area of business and the web, companies around the world are looking beyond their current databases and data warehouses for new ways to handle this data deluge.

Taking a lead from Google, a number of organizations have been exploring the potential of MapReduce, and its open source clone Hadoop, for big data processing. The MapReduce/Hadoop approach is based around the idea that what's needed is not database processing with SQL queries, but rather dataflow computing with simple parallel programming primitives such as map and reduce.

As Google and others have shown, this kind of basic dataflow programming model can be implemented as a coarse-grain set of parallel tasks that can be run across hundreds or thousands of machines, to carry out large-scale batch processing on massive data sets.

Google themselves have been using MapReduce for batch processing for over six years, and others, such as Facebook, eBay and Yahoo have been using Hadoop for the same kind of batch processing for several years now. So today, parallel dataflow is firmly established as an alternative to databases and data warehouses for offline batch processing of big data. But now the game is changing again...

In recent months, Google has realized that the web is now entering a new era, the realtime era, and that batch processing systems such as MapReduce and Hadoop cannot deliver performance anywhere near the speed required for new realtime services such as Google Instant. Google noted that

  • "MapReduce isn't suited to calculations that need to occur in near real-time"

and that

  • "You can't do anything with it that takes a relatively short amount of time, so we got rid of it"

Other industry leaders, such as Jeff Jonas, Chief Scientist for Analytics at IBM, have made similar remarks in recent weeks. In his recent video "Big Thoughts on Big Data", Jonas notes that with only batch processing tools to handle it, organizations grappling with a relentless avalanche of realtime data will get dumber over time rather than getting smarter.

  • "The idea of waiting for a batch job to run doesn't cut it. Instead, how can an organization make sense of what it knows, as a transaction is happening, so that it can do something about it right then"
  • "I'm not a big fan of batch processes... I've never seen a batch system grow up an become a realtime streaming system, but you can take a realtime streaming system and make it eat batches all day long"
  • "I like Hadoop but it's meant for batch activities. That's not the kind of back-end you would use for realtime sense-making systems"

So coarse-grain dataflow architectures such as Hadoop are good for batch, but bad for realtime.

To power realtime big data apps we need a completely new type of fine-grain dataflow architecture. An architecture that can, for example, continuously analyze a stream of events at a rate of say one million events per second per server, and deliver results with a maximum latency of five seconds between data in and analytics out. At Cloudscale we set out to crack this major technical problem, and to build the world's first "realtime data warehouse". The linearly scalable Cloudscale parallel dataflow architecture not only delivers game-changing realtime performance on commodity hardware, but also, as Jeff Jonas notes above "can eat batches all day long" like a traditional MapReduce or Hadoop architecture. There isn't really an established name yet for such a system. I guess we could call it a "Redoop" architecture (Realtime Dataflow on Ordinary Processors, or Realtime Hadoop).

More Stories By Bill McColl

Bill McColl left Oxford University to found Cloudscale. At Oxford he was Professor of Computer Science, Head of the Parallel Computing Research Center, and Chairman of the Computer Science Faculty. Along with Les Valiant of Harvard, he developed the BSP approach to parallel programming. He has led research, product, and business teams, in a number of areas: massively parallel algorithms and architectures, parallel programming languages and tools, datacenter virtualization, realtime stream processing, big data analytics, and cloud computing. He lives in Palo Alto, CA.

CloudEXPO Stories
Digital transformation is about embracing digital technologies into a company's culture to better connect with its customers, automate processes, create better tools, enter new markets, etc. Such a transformation requires continuous orchestration across teams and an environment based on open collaboration and daily experiments. In his session at 21st Cloud Expo, Alex Casalboni, Technical (Cloud) Evangelist at Cloud Academy, explored and discussed the most urgent unsolved challenges to achieve full cloud literacy in the enterprise world.
Wasabi is the hot cloud storage company delivering low-cost, fast, and reliable cloud storage. Wasabi is 80% cheaper and 6x faster than Amazon S3, with 100% data immutability protection and no data egress fees. Created by Carbonite co-founders and cloud storage pioneers David Friend and Jeff Flowers, Wasabi is on a mission to commoditize the storage industry. Wasabi is a privately held company based in Boston, MA. Follow and connect with Wasabi on Twitter, Facebook, Instagram and the Wasabi blog.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to advisory roles at startups. He has worked extensively on monetization, SAAS, IoT, ecosystems, partnerships and accelerating growth in new business initiatives.
The dream is universal: heuristic driven, global business operations without interruption so that nobody has to wake up at 4am to solve a problem. Building upon Nutanix Acropolis software defined storage, virtualization, and networking platform, Mark will demonstrate business lifecycle automation with freedom of choice and consumption models. Hybrid cloud applications and operations are controllable by the Nutanix Prism control plane with Calm automation, which can weave together the following: database as a service with Era, micro segmentation with Flow, event driven lifecycle operations with Epoch monitoring, and both financial and cloud governance with Beam. Combined together, the Nutanix Enterprise Cloud OS democratizes and accelerates every aspect of your business with simplicity, security, and scalability.
Inzata is a powerful, revolutionary data analytics platform for integrating, exploring, and analyzing data of any kind, from any source, at massive scale. Powerful AI-assisted Modeling and a patented analytics engine help users quickly load, blend and model raw and unstructured data into powerful enterprise data models, actionable real-time analytics and engaging visualizations. Go beyond spreadsheets and slides and compose a powerful narrative about how your business is performing, and how you could make it better.