Welcome!

@CloudExpo Authors: Pat Romanski, Zakia Bouachraoui, Elizabeth White, Liz McMillan, William Schmarzo

Related Topics: @CloudExpo, Java IoT, IBM Cloud

@CloudExpo: Blog Post

The IBM Workload Deployer

Introducing workload patterns

I hate sitting on secrets. I always have. I understand that sometimes it's in the best interest of everyone (and your job) to keep tight lips, but that does not make it any more fun. Inevitably, the run-up to our annual IMPACT conferences means everyone in the lab is doing their fair share of secret keeping -- just waiting for announce time. For a lot of us, that day ended Tuesday with the announcement of the IBM Workload Deployer v3.0.

Now, you may be wondering, 'I have never heard of this. Why is it version 3.0??' Well, IBM Workload Deployer is a sort of evolution of the WebSphere CloudBurst Appliance, which was previously at version 2.0. This is good news for all of our current WebSphere CloudBurst users because all of the functionality (plus new bits of course) that they have been using in WebSphere CloudBurst are present in IBM Workload Deployer. You can use and customize our IBM Hypervisor Edition images in IBM Workload Deployer. You can build and deploy custom patterns that contain custom scripts in order to create highly customized IBM middleware environments. So, what's the big deal here? Two words: workload patterns.

Workload patterns represent a new cloud deployment model and are an evolution of the traditional topology patterns you may have seen with WebSphere CloudBurst Appliance (I am a little torn between evolution and revolution, but that's splitting hairs). Fundamentally, workload patterns raise the level of abstraction one notch higher than topology patterns and put the focus on the application. That means, when you use a workload pattern the focus is on the application instead of the application infrastructure. Perhaps an example would be helpful to illustrate how a workload pattern may work in IBM Workload Deployer.

Let's consider the use of a workload pattern that was part of the recent announcement, the IBM Workload Deployer Pattern for Web Applications v1.0. Just how might something like this work? It's simple really. You upload your application (maybe a WAR or EAR file), upload a database schema file (if you want to deploy a database with the solution), upload an LDIF file (if you want to setup an LDAP in the deployment to configure application security), attach policies that describe application requirements (autonomic scaling behavior, availability guidelines, etc), and hit the deploy button. IBM Workload Deployer handles setting up the necessary application middleware, installing and configuring applications, and then managing the resultant runtime in accordance with the policies you defined. In short, workload patterns provide a completely application centric approach to deploying environments to the cloud.

Now, if you are a middleware administrator, application developer, or just a keen observer, you probably have picked up on the fact that in order to deliver something as consumable and easy to use as what I described above, one must make a certain number of assumptions. You are right. Workload patterns encapsulate the installation, configuration, and integration of middleware, as well as the installation and configuration of applications that run on that middleware. Most of this is completely hidden from you, the user. This means you have less control over configuration and integration, but you also have significantly reduced labor and increased freedom/agility. You can concentrate on the development of the application and its components and let IBM Workload Deployer create and manage the infrastructure that services that application.

Having shown and lobbied a bit for the benefits of workload patterns, I also completely understand that sometimes you just need more control. That is not a problem in IBM Workload Deployer because as I said before, you can still create custom patterns, with custom scripts based on custom IBM Hypervisor Edition images. The bottom line is that the IBM Workload Deployer offers choice and flexibility. If your application profile meshes well with a workload pattern, by all means use it. If you need more control over configuration or more highly customized environments, look into IBM Hypervisor Edition images and topology patterns. They are both present in IBM Workload Deployer, and the choice is yours.

If you happen to be coming to IBM Impact next week, there will be much more information about IBM Workload Deployer. I encourage you to drop-by our sessions, ask questions, and take the opportunity to meet some of our IBM lab experts. Hope to see you in Las Vegas!

More Stories By Dustin Amrhein

Dustin Amrhein joined IBM as a member of the development team for WebSphere Application Server. While in that position, he worked on the development of Web services infrastructure and Web services programming models. In his current role, Dustin is a technical specialist for cloud, mobile, and data grid technology in IBM's WebSphere portfolio. He blogs at http://dustinamrhein.ulitzer.com. You can follow him on Twitter at http://twitter.com/damrhein.

CloudEXPO Stories
At CloudEXPO Silicon Valley, June 24-26, 2019, Digital Transformation (DX) is a major focus with expanded DevOpsSUMMIT and FinTechEXPO programs within the DXWorldEXPO agenda. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term. A total of 88% of Fortune 500 companies from a generation ago are now out of business. Only 12% still survive. Similar percentages are found throughout enterprises of all sizes.
OpsRamp is an enterprise IT operation platform provided by US-based OpsRamp, Inc. It provides SaaS services through support for increasingly complex cloud and hybrid computing environments from system operation to service management. The OpsRamp platform is a SaaS-based, multi-tenant solution that enables enterprise IT organizations and cloud service providers like JBS the flexibility and control they need to manage and monitor today's hybrid, multi-cloud infrastructure, applications, and workloads, including Microsoft Azure. We are excited to partner with JBS and look forward to a long and successful relationship.
Apptio fuels digital business transformation. Technology leaders use Apptio's machine learning to analyze and plan their technology spend so they can invest in products that increase the speed of business and deliver innovation. With Apptio, they translate raw costs, utilization, and billing data into business-centric views that help their organization optimize spending, plan strategically, and drive digital strategy that funds growth of the business. Technology leaders can gather instant recommendations that result in up to 30% saving on cloud services. For more information, please visit www.Apptio.com.
The Master of Science in Artificial Intelligence (MSAI) provides a comprehensive framework of theory and practice in the emerging field of AI. The program delivers the foundational knowledge needed to explore both key contextual areas and complex technical applications of AI systems. Curriculum incorporates elements of data science, robotics, and machine learning-enabling you to pursue a holistic and interdisciplinary course of study while preparing for a position in AI research, operations, software or hardware development, or doctoral degree in a sector poised for explosive growth.
Industry after industry is under siege as companies embrace digital transformation (DX) to disrupt existing business models and disintermediate their competitor’s customer relationships. But what do we mean by “Digital Transformation”? The coupling of granular, real-time data (e.g., smartphones, connected devices, smart appliances, wearables, mobile commerce, video surveillance) with modern technologies (e.g., cloud native apps, big data architectures, hyper-converged technologies, artificial intelligence, blockchain) to enhance products, processes, and business-decision making with customer, product and operational insights.