Welcome!

@CloudExpo Authors: Zakia Bouachraoui, Elizabeth White, Liz McMillan, Pat Romanski, Roger Strukhoff

Related Topics: @CloudExpo, Microservices Expo

@CloudExpo: Blog Feed Post

Is the Performance of All Cloud Servers the Same?

CPU or processor power is described by most vendors in terms of cores

One of the benefits of delivering Infrastructure as a Service (IaaS) through the cloud is an abstraction from the underlying hardware delivering the service.  There’s no requirement to understand what technology is being used to deliver, for example, cloud servers.  The specification of a cloud-based server is based on a few simple metrics, CPU, memory and disk space.

CPU or processor power is described by most vendors in terms of cores, which translate to some abstract definition of physical computing power.  Only Amazon Web Services (AWS) reference physical CPU architecture, with processing assigned EC2 Compute Units (ECUs).  You can find more details here, but summarizing, an ECU is approximately the power of a 1.2Ghz 2007 Intel Xeon Processor.  Memory is a more tangible quantity and simply expressed in megabytes or Gigabytes.  Storage references purely disk capacity and has no correlation to actual disk performance.

Being a “storage guy” this lack of an I/O performance metric piqued my interest, as much of my professional career in storage has involved ensuring consistent and high I/O performance.  I thought it would be interesting to look at both processing power and disk I/O performance to see how the different cloud implementations match up.

Measuring Performance
Now I could install some software tool to execute the performance tests, but it’s more interesting to think about the underlying processes that are occurring on a virtual machine, so I’ve created a couple of PERL scripts to do the analysis.  For the CPU measurement, I’ve simply created a script that loops for a fixed number of seconds, performing maths calculations and counting the number of loops that get executed in that fixed interval; in this case one second.  A single measurement isn’t an entirely accurate measure of performance so I repeat the process at one second intervals, obtaining a series of figures that can be averaged out.

For storage I/O my PERL scripts creates a 100MB file, writing a series of random 4K data blocks.  With both scripts I measure elapsed time and the user & system CPU time taken.  If the PERL script is being executed consistently, then CPU time for each metric should be similar across all cloud environments although the elapsed time will vary by the percentage of resources being allocated.

The Results
I ran tests against the following platforms: Amazon AWS, Rackspace and GoGrid, all of which were the US-based service.  I also tried to choose a consistent platform, standardizing on CentOS or RHEL (which should be identical).  Unfortunately there is no standard version of these operating systems available on each platform, so some tests are based on version 5.6, some on 6.x.

  • AWS#1: RHEL 6.1, 2ECU (burst only), 613MB, I/O performance low
  • AWS#2: RHEL 6.1, 2ECU, 7.5GB, I/O performance high
  • AWS#3: CentOS 5.6, 2ECU, 7.5GB, I/O performance high
  • Rackspace: CentOS 5.6, 4 virtual cores, 256MB, 10GB
  • GoGrid: CentOS 6.0, 0.5 CPU Core, 512MB, 25GB disk

What’s interesting is most of the CPU performance figures came out at a similar level, except for the AWS micro-instance.  This gets more power, but after about 10 seconds of continuous use starts to get throttled.  All of the instances are different in their definitions of computing resource but effectively translate to the same amount of CPU speed (remember the script runs single threaded).

For the storage, most instances ranged between 1 & 2 seconds per 100MB file.  However, the two AWS instances using Elastic Block Store (permanent data store, retained even if the instance is destroyed) have significantly worse performance, with the micro-instance being particularly bad.  One curious anomaly is that performance seemed to improve for the micro-instance in line with the way CPU was constricted.  Although the timings were rounded to the nearest second, taking the average of all the observations, the three solutions using instance storage came out at a remarkably similar time, although AWS was slightly faster (1.4s per 100MB compared to 1.7).

So what’s the point of performing these measurements?  Well firstly, it provides an additional way to do better like for like comparisons of the different offerings.  Obviously I/O performance is not part of the server profile but can vary dramatically, depending on the instance type chosen.  If, over time, servers are migrated to new technology, the relative performance level can be evaluated ensure servers remain correctly sized.

I’ll be extending the scripts to do more complex performance testing and see if I/O varies with differing block sizes and how multi-threaded CPU tasks are handled.  Plus, there’s the whole comparison of Linux versus Windows to contend with.

TSA Cloud CPU TSA Cloud IO wan_256

Read the original blog entry...

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


CloudEXPO Stories
The precious oil is extracted from the seeds of prickly pear cactus plant. After taking out the seeds from the fruits, they are adequately dried and then cold pressed to obtain the oil. Indeed, the prickly seed oil is quite expensive. Well, that is understandable when you consider the fact that the seeds are really tiny and each seed contain only about 5% of oil in it at most, plus the seeds are usually handpicked from the fruits. This means it will take tons of these seeds to produce just one bottle of the oil for commercial purpose. But from its medical properties to its culinary importance, skin lightening, moisturizing, and protection abilities, down to its extraordinary hair care properties, prickly seed oil has got lots of excellent rewards for anyone who pays the price.
The platform combines the strengths of Singtel's extensive, intelligent network capabilities with Microsoft's cloud expertise to create a unique solution that sets new standards for IoT applications," said Mr Diomedes Kastanis, Head of IoT at Singtel. "Our solution provides speed, transparency and flexibility, paving the way for a more pervasive use of IoT to accelerate enterprises' digitalisation efforts. AI-powered intelligent connectivity over Microsoft Azure will be the fastest connected path for IoT innovators to scale globally, and the smartest path to cross-device synergy in an instrumented, connected world.
There are many examples of disruption in consumer space – Uber disrupting the cab industry, Airbnb disrupting the hospitality industry and so on; but have you wondered who is disrupting support and operations? AISERA helps make businesses and customers successful by offering consumer-like user experience for support and operations. We have built the world’s first AI-driven IT / HR / Cloud / Customer Support and Operations solution.
ScaleMP is presenting at CloudEXPO 2019, held June 24-26 in Santa Clara, and we’d love to see you there. At the conference, we’ll demonstrate how ScaleMP is solving one of the most vexing challenges for cloud — memory cost and limit of scale — and how our innovative vSMP MemoryONE solution provides affordable larger server memory for the private and public cloud. Please visit us at Booth No. 519 to connect with our experts and learn more about vSMP MemoryONE and how it is already serving some of the world’s largest data centers. Click here to schedule a meeting with our experts and executives.
Darktrace is the world's leading AI company for cyber security. Created by mathematicians from the University of Cambridge, Darktrace's Enterprise Immune System is the first non-consumer application of machine learning to work at scale, across all network types, from physical, virtualized, and cloud, through to IoT and industrial control systems. Installed as a self-configuring cyber defense platform, Darktrace continuously learns what is ‘normal' for all devices and users, updating its understanding as the environment changes.