Click here to close now.


@CloudExpo Authors: Pat Romanski, Elizabeth White, Yeshim Deniz, Jason Bloomberg, Liz McMillan

Related Topics: Containers Expo Blog, Microservices Expo

Containers Expo Blog: Article

How Data Virtualization Improves Business Agility – Part 2

Accelerate value with a streamlined, iterative approach that evolves easily

Business Agility Requires Multiple Approaches
Agile businesses create business agility through a combination of business decision agility, time-to-solution agility and resource agility.

This article addresses how data virtualization delivers time-to-solution agility. Part 1 addressed business decision agility and Part 3 will address resource agility.

Time-To-Solution Agility = Business Value
When responding to new information needs, rapid time-to-solution is critically important and often results in significant bottom-line benefits.

Proven, time and again across multiple industries, substantial time-to-solution improvements can be seen in the ten case studies described in the recently published Data Virtualization: Going Beyond Traditional Data Integration to Achieve Business Agility.

Consider This Example: If the business wants to enter a new market, it must first financially justify the investment, including any new IT requirements. Thus, only the highest ROI projects are approved and funded. Once the effort is approved, accelerating delivery of the IT solution also accelerates realization of the business benefits and ROI.

Therefore, if incremental revenues from the new market are $2 million per month, then the business will gain an additional $2 million for every month IT can save in time needed to deliver the solution.

Streamlined Approach to Data Integration
Data virtualization is significantly more agile and responsive than traditional data consolidation and ETL-based integration approaches because it uses a highly streamlined architecture and development process to build and deploy data integration solutions.

This approach greatly reduces complexity and reduces or eliminates the need for data replication and data movement. As numerous data virtualization case studies demonstrate, this elegance of design and architecture makes it far easier and faster to develop and deploy data integration solutions using a data virtualization platform. The ultimate result is faster realization of business benefits.

To better understand the difference, let's contrast these methods. In both the traditional data warehouse/ETL approach and data virtualization, understanding the information requirements and reporting schema is the common first step.

Traditional Data Integration Has Many Moving Parts
Using the traditional approach IT then models and implements the data warehouse schema. ETL development follows to create the links between the sources and the warehouse. Finally the ETL scripts are run to populate the warehouse. The metadata, data models/schemas and development tools used within each activity are unique to each activity.

This diverse environment of different metadata, data models/schemas and development tools is not only complex but also results in the need to coordinate and synchronize efforts and objects across them.

Experienced BI and data integration users will readily acknowledge the long development times that result from this complexity, including Forrester Research in its 2011 report Data Virtualization Reaches Critical Mass.

"Extract, transform, and load (ETL) approaches require one or more copies of data staged along the physical integration process flow. Creating, storing, and manipulating these copies can be complex and error prone."

Data Virtualization Has Fewer Moving Parts
Data virtualization uses a more streamlined architecture that simplifies development. Once the information requirements and reporting schema are understood, the next step is to develop the objects (views and data services) used to both model and query the required data.

These virtual equivalents of the warehouse schema and ETL routines and scripts are created within a single view or data service object using a unified data virtualization development environment. This approach leverages the same metadata, data models/schemas and tools.

Not only is it easier to build the data integration layer using data virtualization, but there are also fewer "moving parts," which reduces the need for coordination and synchronization activities. With data virtualization, there is no need to physically migrate data from the sources to a warehouse. The only data that is moved is the data delivered directly from the source to the consumer on-demand. These result sets persist in the data virtualization server's memory for only a short interval.

Avoiding data warehouse loads, reloads and updates further simplifies and streamlines solution deployment and thereby improves time-to-solution agility.

Iterative Development Process Is Better for Business Users
Another way data virtualization improves time-to-solution agility is through support for a fast, iterative development approach. Here, business users and IT collaborate to quickly define the initial solution requirements followed by an iterative "develop, get feedback and refine" process until the solution meets the user need.

Most users prefer this type of development process. Because building views of existing data is simple and fast, IT can provide business users with prospective versions of new data sets in just a few hours. The user doesn't have to wait months for results while IT develops detailed solution requirements. Then business users can react to these data sets and refine their requirements based on the tangible insights. IT can then change the views and show the refined data sets to the business users.

This iterative development approach enables the business and IT to hone in on and deliver the needed information much faster than traditional integration methods.

Even in cases where a data warehouse solution is mandated by specific analytic needs, data virtualization can be used to support rapid prototyping of the solution. The initial solution is built using data virtualization's iterative development approach, with migration to the data warehouse approach once the business is fully satisfied with the information delivered.

In contrast, developing a new information solution using traditional data integration architecture is inherently more complex. Typically, business users must fully and accurately specify their information requirements prior to any development, with little change tolerated. Not only does the development process take longer, but there is a real risk that the resulting solution will not be what the users actually need and want.

Data virtualization offers significant value, and the opportunity to reduce risk and cost, by enabling IT to quickly deliver iterative results that enable users to truly understand what their real information needs are and get a solution that meets those needs.

Ease of Data Virtualization Change Keeps Pace with Business Change
The third way data virtualization improves time-to-solution agility is ease of change. Information needs evolve. So do the associated source systems and consuming applications. Data virtualization allows a more loosely coupled architecture between sources, consumers and the data virtualization objects and middleware that integrate them.

This level of independence makes it significantly easier to extend and adapt existing data virtualization solutions as business requirements or associated source and consumer system implementations change. In fact, changing an existing view, adding a new source or migrating from one source to another is often completed in hours or days, versus weeks or months in the traditional approach.

Data virtualization reduces complexity, data replication and data movement. Business users and IT collaborate to quickly define the initial solution requirements followed by an iterative "develop, get feedback and refine" delivery process. Further independent layers make it significantly easier to extend and adapt existing data virtualization solutions as business requirements or associated source and consumer system implementations change.

These time-to-solution accelerators, as numerous data virtualization case studies demonstrate, make it far easier and faster to develop and deploy data integration solutions using a data virtualization platform than other approaches. The result is faster realization of business benefits.

Editor's Note: Robert Eve is the co-author, along with Judith R. Davis, of Data Virtualization: Going Beyond Traditional Data Integration to Achieve Business Agility, the first book published on the topic of data virtualization. This series of three articles on How Data Virtualization Delivers Business Agility includes excerpts from the book.

More Stories By Robert Eve

Robert Eve is the EVP of Marketing at Composite Software, the data virtualization gold standard and co-author of Data Virtualization: Going Beyond Traditional Data Integration to Achieve Business Agility. Bob's experience includes executive level roles at leading enterprise software companies such as Mercury Interactive, PeopleSoft, and Oracle. Bob holds a Masters of Science from the Massachusetts Institute of Technology and a Bachelor of Science from the University of California at Berkeley.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.

@CloudExpo Stories
JFrog has announced a powerful technology for managing software packages from development into production. JFrog Artifactory 4 represents disruptive innovation in its groundbreaking ability to help development and DevOps teams deliver increasingly complex solutions on ever-shorter deadlines across multiple platforms JFrog Artifactory 4 establishes a new category – the Universal Artifact Repository – that reflects JFrog's unique commitment to enable faster software releases through the first pla...
There are many considerations when moving applications from on-premise to cloud. It is critical to understand the benefits and also challenges of this migration. A successful migration will result in lower Total Cost of Ownership, yet offer the same or higher level of robustness. Migration to cloud shifts computing resources from your data center, which can yield significant advantages provided that the cloud vendor an offer enterprise-grade quality for your application.
Through WebRTC, audio and video communications are being embedded more easily than ever into applications, helping carriers, enterprises and independent software vendors deliver greater functionality to their end users. With today’s business world increasingly focused on outcomes, users’ growing calls for ease of use, and businesses craving smarter, tighter integration, what’s the next step in delivering a richer, more immersive experience? That richer, more fully integrated experience comes ab...
Overgrown applications have given way to modular applications, driven by the need to break larger problems into smaller problems. Similarly large monolithic development processes have been forced to be broken into smaller agile development cycles. Looking at trends in software development, microservices architectures meet the same demands. Additional benefits of microservices architectures are compartmentalization and a limited impact of service failure versus a complete software malfunction....
IT data is typically silo'd by the various tools in place. Unifying all the log, metric and event data in one analytics platform stops finger pointing and provides the end-to-end correlation. Logs, metrics and custom event data can be joined to tell the holistic story of your software and operations. For example, users can correlate code deploys to system performance to application error codes.
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data...
The buzz continues for cloud, data analytics and the Internet of Things (IoT) and their collective impact across all industries. But a new conversation is emerging - how do companies use industry disruption and technology enablers to lead in markets undergoing change, uncertainty and ambiguity? Organizations of all sizes need to evolve and transform, often under massive pressure, as industry lines blur and merge and traditional business models are assaulted and turned upside down. In this new da...
As-a-service models offer huge opportunities, but also complicate security. It may seem that the easiest way to migrate to a new architectural model is to let others, experts in their field, do the work. This has given rise to many as-a-service models throughout the industry and across the entire technology stack, from software to infrastructure. While this has unlocked huge opportunities to accelerate the deployment of new capabilities or increase economic efficiencies within an organization, i...
The web app is agile. The REST API is agile. The testing and planning are agile. But alas, data infrastructures certainly are not. Once an application matures, changing the shape or indexing scheme of data often forces at best a top down planning exercise and at worst includes schema changes that force downtime. The time has come for a new approach that fundamentally advances the agility of distributed data infrastructures. Come learn about a new solution to the problems faced by software organ...
Between the compelling mockups and specs produced by analysts, and resulting applications built by developers, there exists a gulf where projects fail, costs spiral, and applications disappoint. Methodologies like Agile attempt to address this with intensified communication, with partial success but many limitations. In his session at DevOps Summit, Charles Kendrick, CTO and Chief Architect at Isomorphic Software, will present a revolutionary model enabled by new technologies. Learn how busine...
SYS-CON Events announced today that Dyn, the worldwide leader in Internet Performance, will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Dyn is a cloud-based Internet Performance company. Dyn helps companies monitor, control, and optimize online infrastructure for an exceptional end-user experience. Through a world-class network and unrivaled, objective intelligence into Internet condit...
The last decade was about virtual machines, but the next one is about containers. Containers enable a service to run on any host at any time. Traditional tools are starting to show cracks because they were not designed for this level of application portability. Now is the time to look at new ways to deploy and manage applications at scale. In his session at @DevOpsSummit, Brian “Redbeard” Harrington, a principal architect at CoreOS, will examine how CoreOS helps teams run in production. Attende...
Containers are revolutionizing the way we deploy and maintain our infrastructures, but monitoring and troubleshooting in a containerized environment can still be painful and impractical. Understanding even basic resource usage is difficult - let alone tracking network connections or malicious activity. In his session at DevOps Summit, Gianluca Borello, Sr. Software Engineer at Sysdig, will cover the current state of the art for container monitoring and visibility, including pros / cons and li...
There are so many tools and techniques for data analytics that even for a data scientist the choices, possible systems, and even the types of data can be daunting. In his session at @ThingsExpo, Chris Harrold, Global CTO for Big Data Solutions for EMC Corporation, will show how to perform a simple, but meaningful analysis of social sentiment data using freely available tools that take only minutes to download and install. Participants will get the download information, scripts, and complete en...
Containers are changing the security landscape for software development and deployment. As with any security solutions, security approaches that work for developers, operations personnel and security professionals is a requirement. In his session at @DevOpsSummit, Kevin Gilpin, CTO and Co-Founder of Conjur, will discuss various security considerations for container-based infrastructure and related DevOps workflows.
Manufacturing has widely adopted standardized and automated processes to create designs, build them, and maintain them through their life cycle. However, many modern manufacturing systems go beyond mechanized workflows to introduce empowered workers, flexible collaboration, and rapid iteration. Such behaviors also characterize open source software development and are at the heart of DevOps culture, processes, and tooling.
Internet of Things (IoT) will be a hybrid ecosystem of diverse devices and sensors collaborating with operational and enterprise systems to create the next big application. In their session at @ThingsExpo, Bramh Gupta, founder and CEO of, and Fred Yatzeck, principal architect leading product development at, discussed how choosing the right middleware and integration strategy from the get-go will enable IoT solution developers to adapt and grow with the industry, while at th...
“All our customers are looking at the cloud ecosystem as an important part of their overall product strategy. Some see it evolve as a multi-cloud / hybrid cloud strategy, while others are embracing all forms of cloud offerings like PaaS, IaaS and SaaS in their solutions,” noted Suhas Joshi, Vice President – Technology, at Harbinger Group, in this exclusive Q&A with Cloud Expo Conference Chair Roger Strukhoff.
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. It also ensured scalability and better service for customers, including MUY! Companies, one of the country's largest franchise restaurant companies with 232 Pizza Hut locations. This is one example of...
SYS-CON Events announced today that VividCortex, the monitoring solution for the modern data system, will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. The database is the heart of most applications, but it’s also the part that’s hardest to scale, monitor, and optimize even as it’s growing 50% year over year. VividCortex is the first unified suite of database monitoring tools specifically desi...