Click here to close now.


@CloudExpo Authors: Liz McMillan, Pat Romanski, Elizabeth White, Lori MacVittie, Yeshim Deniz

Related Topics: Containers Expo Blog, Microservices Expo

Containers Expo Blog: Article

How Data Virtualization Improves Business Agility – Part 3

Optimize staff, infrastructure and integration approach for maximum ROI

While the benefits derived from greater business agility are significant, costs are also an important factor to consider. This is especially true in today's extremely competitive business environment and difficult economic times.

This article, the last in a series of three articles on how data virtualization delivers business agility, focuses on resource agility.

In Parts 1 and 2, business decision agility and time-to-solution agility were addressed.

Resource Agility Is a Key Enabler of Business Agility
In the recently published Data Virtualization: Going Beyond Traditional Data Integration to Achieve Business Agility, resource agility was identified as the third key element in an enterprise's business agility strategy, along with business decision agility and time-to-solution agility.

Data virtualization directly enables greater resource agility through superior developer productivity, lower infrastructure costs and better optimization of data integration solutions.

These factors combine to provide significant cost savings that can be applied flexibly to fund additional data integration activities and/or other business and IT projects.

Superior Developer Productivity Saves Personnel Costs
At 41% of the typical enterprise IT budget, personnel staffing expenses, including salaries, benefits and occupancy, represent the largest category of IT spending according to recently published analyst research. This spending is double that of both software and outsourcing, and two-and-a-half times that of hardware.

Not only are these staffing costs high in absolute terms, with data integration efforts often representing half the work in a typical IT development project, data integration developer productivity is critically important on a relative basis as well.

As described in Part 2 of this series, data virtualization uses a streamlined architecture and development approach. Not only does this improve time-to-solution agility, it also improves developer productivity in several ways.

  • First, data virtualization allows rapid, iterative development of views and data services. The development and deployment time savings associated with this development approach directly translate into lower staffing costs.
  • Second, the typically SQL-based views used in data virtualization are a well-understood IT paradigm. And the IDEs for building these views share common terminology and techniques with the IDEs for the most popular relational databases. The same can be said for data services and popular SOA IDEs. These factors make data virtualization easy for developers to learn and reduce training costs typically required when adopting new tools.
  • Third, graphically oriented IDEs simplify data virtualization solution development with significant built-in code generation and automatic query optimization. This enables less senior and lower cost development staff to build data integration solutions.
  • Fourth, the views and services built for one application can easily be reused across other applications. This further increases productivity and reduces staffing resource costs.

Better Asset Leverage Lowers Infrastructure Costs
Large enterprises typically have hundreds, if not thousands, of data sources. While these data assets can be leveraged to provide business decision agility, these returns come at a cost. Each source needs to be efficiently operated and managed and the data effectively governed. These ongoing infrastructure costs typically dwarf initial hardware and software implementation costs.

Traditional data integration approaches, where data is consolidated in data warehouses or marts, add to the overall number of data sources. This necessitates not only greater up-front capital expenditures, but also increased spending for ongoing operations and management. In addition, every new copy of the data introduces an opportunity for inconsistency and lower data quality.

Protecting against these inevitable issues is a non-value-added activity that further diverts critical resources. Finally, more sources equal more complexity. This means large, ongoing investments in coordination and synchronization activities.

These demands consume valuable resources that can be significantly reduced through the use of data virtualization. Because data virtualization requires fewer physical data repositories than traditional data integration approaches, enterprises that use data virtualization lower their capital expenditures as well as their operating, management and governance costs. In fact, many data virtualization users find these infrastructure savings alone can justify their entire investment in data virtualization technology.

Add Data Virtualization to Optimize Your Data Integration Portfolio
As a component of a broad data integration portfolio, data virtualization joins traditional data integration approaches such as data consolidation in the form of data warehouses and marts enabled by ETL as well as messaging and replication-based approaches that move data from one location to another.

Each of these approaches has strengths and limitations when addressing various business information needs, data source and consumer technologies, time-to-solution and resource agility requirements.

For example, a data warehouse approach to integration is often deployed when analyzing historical time-series data across multiple dimensions. Data virtualization is typically adopted to support one or more of the five popular data virtualization usage patterns:

  • BI data federation
  • Data warehouse extension
  • Enterprise data virtualization layer
  • Big data integration
  • Cloud data integration

Given the many information needs, integration challenges, and business agility objectives organizations have to juggle, each data integration approach added to the portfolio improves the organization's data integration flexibility and thus optimizes the ability to deliver effective data integration solutions.

With data virtualization in the integration portfolio, the organization can optimally mix and match physical and virtual integration methods based on the distinct requirements of a specific application's information needs, source data characteristics and other critical factors such as time-to-solution, data latency and total cost of ownership.

In addition, data virtualization provides the opportunity to refactor and optimize data models that are distributed across multiple applications and consolidated stores. For example, many enterprises use their BI tool's semantic layer and/or data warehouse schema to manage data definitions and models. Data virtualization provides the option to centralize this key functionality in the data virtualization layer. This can be especially useful in cases where the enterprise has several BI tools and/or multiple warehouses and marts, each with their own schemas and governance.

Data virtualization's streamlined architecture and development approach significantly improves developer productivity. Further, data virtualization requires fewer physical data repositories than traditional data integration approaches. This means that data virtualization users lower their capital expenditures as well as their operating, management and governance costs. Finally, adding data virtualization to the integration portfolio enables the optimization of physical and virtual integration methods.

These factors combine to provide significant cost savings that can be applied flexibly to fund additional data integration activities and/or other business and IT projects in the pursuit of business agility.

•   •   •

Editor's Note: Robert Eve is the co-author, along with Judith R. Davis, of Data Virtualization: Going Beyond Traditional Data Integration to Achieve Business Agility, the first book published on the topic of data virtualization. This series of three articles on How Data Virtualization Delivers Business Agility includes excerpts from the book.

More Stories By Robert Eve

Robert Eve is the EVP of Marketing at Composite Software, the data virtualization gold standard and co-author of Data Virtualization: Going Beyond Traditional Data Integration to Achieve Business Agility. Bob's experience includes executive level roles at leading enterprise software companies such as Mercury Interactive, PeopleSoft, and Oracle. Bob holds a Masters of Science from the Massachusetts Institute of Technology and a Bachelor of Science from the University of California at Berkeley.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.

@CloudExpo Stories
Containers are revolutionizing the way we deploy and maintain our infrastructures, but monitoring and troubleshooting in a containerized environment can still be painful and impractical. Understanding even basic resource usage is difficult - let alone tracking network connections or malicious activity. In his session at DevOps Summit, Gianluca Borello, Sr. Software Engineer at Sysdig, will cover the current state of the art for container monitoring and visibility, including pros / cons and li...
SYS-CON Events announced today that VividCortex, the monitoring solution for the modern data system, will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. The database is the heart of most applications, but it’s also the part that’s hardest to scale, monitor, and optimize even as it’s growing 50% year over year. VividCortex is the first unified suite of database monitoring tools specifically desi...
There are many considerations when moving applications from on-premise to cloud. It is critical to understand the benefits and also challenges of this migration. A successful migration will result in lower Total Cost of Ownership, yet offer the same or higher level of robustness. Migration to cloud shifts computing resources from your data center, which can yield significant advantages provided that the cloud vendor an offer enterprise-grade quality for your application.
Cloud computing delivers on-demand resources that provide businesses with flexibility and cost-savings. The challenge in moving workloads to the cloud has been the cost and complexity of ensuring the initial and ongoing security and regulatory (PCI, HIPAA, FFIEC) compliance across private and public clouds. Manual security compliance is slow, prone to human error, and represents over 50% of the cost of managing cloud applications. Determining how to automate cloud security compliance is critical...
Manufacturing has widely adopted standardized and automated processes to create designs, build them, and maintain them through their life cycle. However, many modern manufacturing systems go beyond mechanized workflows to introduce empowered workers, flexible collaboration, and rapid iteration. Such behaviors also characterize open source software development and are at the heart of DevOps culture, processes, and tooling.
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data...
The buzz continues for cloud, data analytics and the Internet of Things (IoT) and their collective impact across all industries. But a new conversation is emerging - how do companies use industry disruption and technology enablers to lead in markets undergoing change, uncertainty and ambiguity? Organizations of all sizes need to evolve and transform, often under massive pressure, as industry lines blur and merge and traditional business models are assaulted and turned upside down. In this new da...
Containers are changing the security landscape for software development and deployment. As with any security solutions, security approaches that work for developers, operations personnel and security professionals is a requirement. In his session at @DevOpsSummit, Kevin Gilpin, CTO and Co-Founder of Conjur, will discuss various security considerations for container-based infrastructure and related DevOps workflows.
As-a-service models offer huge opportunities, but also complicate security. It may seem that the easiest way to migrate to a new architectural model is to let others, experts in their field, do the work. This has given rise to many as-a-service models throughout the industry and across the entire technology stack, from software to infrastructure. While this has unlocked huge opportunities to accelerate the deployment of new capabilities or increase economic efficiencies within an organization, i...
Saviynt Inc. has announced the availability of the next release of Saviynt for AWS. The comprehensive security and compliance solution provides a Command-and-Control center to gain visibility into risks in AWS, enforce real-time protection of critical workloads as well as data and automate access life-cycle governance. The solution enables AWS customers to meet their compliance mandates such as ITAR, SOX, PCI, etc. by including an extensive risk and controls library to detect known threats and b...
You have your devices and your data, but what about the rest of your Internet of Things story? Two popular classes of technologies that nicely handle the Big Data analytics for Internet of Things are Apache Hadoop and NoSQL. Hadoop is designed for parallelizing analytical work across many servers and is ideal for the massive data volumes you create with IoT devices. NoSQL databases such as Apache HBase are ideal for storing and retrieving IoT data as “time series data.”
Clearly the way forward is to move to cloud be it bare metal, VMs or containers. One aspect of the current public clouds that is slowing this cloud migration is cloud lock-in. Every cloud vendor is trying to make it very difficult to move out once a customer has chosen their cloud. In his session at 17th Cloud Expo, Naveen Nimmu, CEO of Clouber, Inc., will advocate that making the inter-cloud migration as simple as changing airlines would help the entire industry to quickly adopt the cloud wit...
There are so many tools and techniques for data analytics that even for a data scientist the choices, possible systems, and even the types of data can be daunting. In his session at @ThingsExpo, Chris Harrold, Global CTO for Big Data Solutions for EMC Corporation, will show how to perform a simple, but meaningful analysis of social sentiment data using freely available tools that take only minutes to download and install. Participants will get the download information, scripts, and complete en...
IT data is typically silo'd by the various tools in place. Unifying all the log, metric and event data in one analytics platform stops finger pointing and provides the end-to-end correlation. Logs, metrics and custom event data can be joined to tell the holistic story of your software and operations. For example, users can correlate code deploys to system performance to application error codes.
Overgrown applications have given way to modular applications, driven by the need to break larger problems into smaller problems. Similarly large monolithic development processes have been forced to be broken into smaller agile development cycles. Looking at trends in software development, microservices architectures meet the same demands. Additional benefits of microservices architectures are compartmentalization and a limited impact of service failure versus a complete software malfunction....
Between the compelling mockups and specs produced by analysts, and resulting applications built by developers, there exists a gulf where projects fail, costs spiral, and applications disappoint. Methodologies like Agile attempt to address this with intensified communication, with partial success but many limitations. In his session at DevOps Summit, Charles Kendrick, CTO and Chief Architect at Isomorphic Software, will present a revolutionary model enabled by new technologies. Learn how busine...
The web app is agile. The REST API is agile. The testing and planning are agile. But alas, data infrastructures certainly are not. Once an application matures, changing the shape or indexing scheme of data often forces at best a top down planning exercise and at worst includes schema changes that force downtime. The time has come for a new approach that fundamentally advances the agility of distributed data infrastructures. Come learn about a new solution to the problems faced by software organ...
NHK, Japan Broadcasting, will feature the upcoming @ThingsExpo Silicon Valley in a special 'Internet of Things' and smart technology documentary that will be filmed on the expo floor between November 3 to 5, 2015, in Santa Clara. NHK is the sole public TV network in Japan equivalent to the BBC in the UK and the largest in Asia with many award-winning science and technology programs. Japanese TV is producing a documentary about IoT and Smart technology and will be covering @ThingsExpo Silicon Val...
Organizations already struggle with the simple collection of data resulting from the proliferation of IoT, lacking the right infrastructure to manage it. They can't only rely on the cloud to collect and utilize this data because many applications still require dedicated infrastructure for security, redundancy, performance, etc. In his session at 17th Cloud Expo, Emil Sayegh, CEO of Codero Hosting, will discuss how in order to resolve the inherent issues, companies need to combine dedicated a...
SYS-CON Events announced today that ProfitBricks, the provider of painless cloud infrastructure, will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. ProfitBricks is the IaaS provider that offers a painless cloud experience for all IT users, with no learning curve. ProfitBricks boasts flexible cloud servers and networking, an integrated Data Center Designer tool for visual control over the...