Welcome!

@CloudExpo Authors: Elizabeth White, Pat Romanski, Liz McMillan, Yeshim Deniz, Maria C. Horton

Related Topics: @CloudExpo

@CloudExpo: Blog Post

The Economics of Big Data: Why Faster Software is Cheaper

Faster means better and cheaper - lower latency and lower cost!

In big data computing, and more generally in all commercial highly parallel software systems, speed matters more than just about anything else. The reason is straightforward, and has been known for decades.

Put very simply, when it comes to massively parallel software of the kind need to handle big data, fast is both better AND cheaper. Faster means lower latency AND lower cost.

At first this may seem counterintuitive. A high-end sports car will be much faster than a standard family sedan, but the family sedan may be much cheaper. Cheaper to buy, and cheaper to run. But massively parallel software running on commodity hardware is a quite different type of product from a car. In general, the faster it goes, the cheaper it is to run.

Time Is Money
As has been noted many times in the history of computing, if you are a factor of 50x slower, then you will need 50x more nodes to run at the same speed (even assuming perfect parallelization), or your computation will need 50x more time. In either case, it will also be much more likely that you will experience at least one of your nodes crashing during a computation. This is not to argue that automatic fault tolerance and recovery should be ignored in the pursuit of speed, but rather that these two factors need to be carefully balanced. Good design in massively parallel systems is about achieving maximum speed along with the ability to recover from a given expected level of hardware failure, via checkpointing.

The key phrase here is "a given expected level of hardware failure". In certain types of peer-to-peer services which take advantage of idle PC capacity, it is necessary to assume that all machines are extremely unreliable and may go offline at any time. However, in a commercial big data cluster it may be reasonably asssumed that almost all machines will be available almost all of the time. This means that a much more optimistic point in the design space can be chosen, one which is designed much more for speed than for pathological failure scenarios.

The MapReduce model is an example of a model where speed has been sacrificed in a major way in order to achieve scalability on very unreliable hardware. As we have noted, while this is acceptable in certain types of free peer-to-peer services, it is much less acceptable in commercial big data systems deployed at scale.

Google, the inventors of the model, were the first to recognize the throughput and latency problems with the MapReduce model. To get the realtime performance they required, they recently replaced MapReduce in their Google Instant search engine.

The MapReduce model of Apache Hadoop is slow. In fact, it's very slow compared to, for example, the kinds of MPI or BSP clusters that have been routinely used in supercomputing for more than 15 years. On exactly the same hardware, MapReduce can be several orders of magnitude slower than MPI or BSP. By using MPI rather than MapReduce, HadoopBI gives customers the best possible big data solution, not only in terms of performance - massive throughput and extremely low latency - but also in terms of economics. HadoopBI is not just the fastest Big Data BI solution, it is also the cheapest at scale.

It's Free, But Is It Fast Enough?
Another frequently misunderstood element of big data economics concerns so-called "free" software. It has been argued by some that, since big data software needs to be run on many nodes, it is really important to have software that is free. Again this is an extreme oversimplification that ignores the dominant cost issues in big data economics. At large scale, software costs will in general be much smaller than hardware or cloud costs. And commercial software vendors should ensure that they are, if they want to stay in business.

Consider the following small-scale example. A company needs to process big data continuously in order to maximize competitive advantage. For simplicity, we will assume that the cost of running a single server (in-house or cloud) for one hour is $1, and that the company has a choice between two big data software systems - system A costs $1,000 per server and system B is free, but system A is 8x faster. Choosing system A, the company requires 5 servers, working continuously, to achieve the throughput required. However, if the company chooses system B, it will require 40 servers running continuously.

Simple arithmetic shows that within just six days, the initial cost of system A has been recovered, and from then on system A gives the company massive cost savings. Even if system A is only 2x or 3x faster and more efficient than system B, the initial cost will still be recovered in a matter of a few weeks.

The economic advantages of speed at scale are magnified even more in large-scale big data systems where, with volume licensing discounts, the payback time for super-fast software is even shorter.

The lesson of the above example is simple and very important. In parallel systems, speed at scale is king, as speed equates to efficiency, and efficiency equates to massive cost savings at scale. So, to be relevant for large scale production deployments, free parallel software has to be at least as fast and efficient as the best commercial software, otherwise the economics will be solidly against it. Some examples of free software, such as the Linux operating system, have achieved this goal. It remains to be seen whether this will also be the case with highly parallel big data software. In the meantime, it's important to remember that "free software is cheap, but fast software can be even cheaper".

More Stories By Bill McColl

Bill McColl left Oxford University to found Cloudscale. At Oxford he was Professor of Computer Science, Head of the Parallel Computing Research Center, and Chairman of the Computer Science Faculty. Along with Les Valiant of Harvard, he developed the BSP approach to parallel programming. He has led research, product, and business teams, in a number of areas: massively parallel algorithms and architectures, parallel programming languages and tools, datacenter virtualization, realtime stream processing, big data analytics, and cloud computing. He lives in Palo Alto, CA.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@CloudExpo Stories
"This week we're really focusing on scalability, asset preservation and how do you back up to the cloud and in the cloud with object storage, which is really a new way of attacking dealing with your file, your blocked data, where you put it and how you access it," stated Jeff Greenwald, Senior Director of Market Development at HGST, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
"Venafi has a platform that allows you to manage, centralize and automate the complete life cycle of keys and certificates within the organization," explained Gina Osmond, Sr. Field Marketing Manager at Venafi, in this SYS-CON.tv interview at DevOps at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
Creating replica copies to tolerate a certain number of failures is easy, but very expensive at cloud-scale. Conventional RAID has lower overhead, but it is limited in the number of failures it can tolerate. And the management is like herding cats (overseeing capacity, rebuilds, migrations, and degraded performance). In his general session at 18th Cloud Expo, Scott Cleland, Senior Director of Product Marketing for the HGST Cloud Infrastructure Business Unit, discussed how a new approach is neces...
Cloud-enabled transformation has evolved from cost saving measure to business innovation strategy -- one that combines the cloud with cognitive capabilities to drive market disruption. Learn how you can achieve the insight and agility you need to gain a competitive advantage. Industry-acclaimed CTO and cloud expert, Shankar Kalyana presents. Only the most exceptional IBMers are appointed with the rare distinction of IBM Fellow, the highest technical honor in the company. Shankar has also receive...
"We're developing a software that is based on the cloud environment and we are providing those services to corporations and the general public," explained Seungmin Kim, CEO/CTO of SM Systems Inc., in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Business professionals no longer wonder if they'll migrate to the cloud; it's now a matter of when. The cloud environment has proved to be a major force in transitioning to an agile business model that enables quick decisions and fast implementation that solidify customer relationships. And when the cloud is combined with the power of cognitive computing, it drives innovation and transformation that achieves astounding competitive advantage.
Leading companies, from the Global Fortune 500 to the smallest companies, are adopting hybrid cloud as the path to business advantage. Hybrid cloud depends on cloud services and on-premises infrastructure working in unison. Successful implementations require new levels of data mobility, enabled by an automated and seamless flow across on-premises and cloud resources. In his general session at 21st Cloud Expo, Greg Tevis, an IBM Storage Software Technical Strategist and Customer Solution Architec...
In his session at Cloud Expo, Alan Winters, U.S. Head of Business Development at MobiDev, presented a success story of an entrepreneur who has both suffered through and benefited from offshore development across multiple businesses: The smart choice, or how to select the right offshore development partner Warning signs, or how to minimize chances of making the wrong choice Collaboration, or how to establish the most effective work processes Budget control, or how to maximize project result...
To get the most out of their data, successful companies are not focusing on queries and data lakes, they are actively integrating analytics into their operations with a data-first application development approach. Real-time adjustments to improve revenues, reduce costs, or mitigate risk rely on applications that minimize latency on a variety of data sources. In his session at @BigDataExpo, Jack Norris, Senior Vice President, Data and Applications at MapR Technologies, reviewed best practices to ...
"Software-defined storage is a big problem in this industry because so many people have different definitions as they see fit to use it," stated Peter McCallum, VP of Datacenter Solutions at FalconStor Software, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
Data is the fuel that drives the machine learning algorithmic engines and ultimately provides the business value. In his session at Cloud Expo, Ed Featherston, a director and senior enterprise architect at Collaborative Consulting, discussed the key considerations around quality, volume, timeliness, and pedigree that must be dealt with in order to properly fuel that engine.
"Our strategy is to focus on the hyperscale providers - AWS, Azure, and Google. Over the last year we saw that a lot of developers need to learn how to do their job in the cloud and we see this DevOps movement that we are catering to with our content," stated Alessandro Fasan, Head of Global Sales at Cloud Academy, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
In his keynote at 19th Cloud Expo, Sheng Liang, co-founder and CEO of Rancher Labs, discussed the technological advances and new business opportunities created by the rapid adoption of containers. With the success of Amazon Web Services (AWS) and various open source technologies used to build private clouds, cloud computing has become an essential component of IT strategy. However, users continue to face challenges in implementing clouds, as older technologies evolve and newer ones like Docker c...
As organizations shift towards IT-as-a-service models, the need for managing and protecting data residing across physical, virtual, and now cloud environments grows with it. Commvault can ensure protection, access and E-Discovery of your data – whether in a private cloud, a Service Provider delivered public cloud, or a hybrid cloud environment – across the heterogeneous enterprise. In his general session at 18th Cloud Expo, Randy De Meno, Chief Technologist - Windows Products and Microsoft Part...
Andi Mann, Chief Technology Advocate at Splunk, is an accomplished digital business executive with extensive global expertise as a strategist, technologist, innovator, marketer, and communicator. For over 30 years across five continents, he has built success with Fortune 500 corporations, vendors, governments, and as a leading research analyst and consultant.
To Really Work for Enterprises, MultiCloud Adoption Requires Far Better and Inclusive Cloud Monitoring and Cost Management … But How? Overwhelmingly, even as enterprises have adopted cloud computing and are expanding to multi-cloud computing, IT leaders remain concerned about how to monitor, manage and control costs across hybrid and multi-cloud deployments. It’s clear that traditional IT monitoring and management approaches, designed after all for on-premises data centers, are falling short in ...
It is ironic, but perhaps not unexpected, that many organizations who want the benefits of using an Agile approach to deliver software use a waterfall approach to adopting Agile practices: they form plans, they set milestones, and they measure progress by how many teams they have engaged. Old habits die hard, but like most waterfall software projects, most waterfall-style Agile adoption efforts fail to produce the results desired. The problem is that to get the results they want, they have to ch...
"We're focused on how to get some of the attributes that you would expect from an Amazon, Azure, Google, and doing that on-prem. We believe today that you can actually get those types of things done with certain architectures available in the market today," explained Steve Conner, VP of Sales at Cloudistics, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Organizations planning enterprise data center consolidation and modernization projects are faced with a challenging, costly reality. Requirements to deploy modern, cloud-native applications simultaneously with traditional client/server applications are almost impossible to achieve with hardware-centric enterprise infrastructure. Compute and network infrastructure are fast moving down a software-defined path, but storage has been a laggard. Until now.
Without a clear strategy for cost control and an architecture designed with cloud services in mind, costs and operational performance can quickly get out of control. To avoid multiple architectural redesigns requires extensive thought and planning. Boundary (now part of BMC) launched a new public-facing multi-tenant high resolution monitoring service on Amazon AWS two years ago, facing challenges and learning best practices in the early days of the new service.
DXWorldEXPO LLC announced today that the upcoming DXWorldEXPO | CloudEXPO New York event will feature 10 companies from Poland to participate at the "Poland Digital Transformation Pavilion" on November 12-13, 2018.