Welcome!

@CloudExpo Authors: Elizabeth White, Liz McMillan, Pat Romanski, Ruxit Blog, Christopher Keene

Related Topics: @CloudExpo

@CloudExpo: Blog Post

The Economics of Big Data: Why Faster Software is Cheaper

Faster means better and cheaper - lower latency and lower cost!

In big data computing, and more generally in all commercial highly parallel software systems, speed matters more than just about anything else. The reason is straightforward, and has been known for decades.

Put very simply, when it comes to massively parallel software of the kind need to handle big data, fast is both better AND cheaper. Faster means lower latency AND lower cost.

At first this may seem counterintuitive. A high-end sports car will be much faster than a standard family sedan, but the family sedan may be much cheaper. Cheaper to buy, and cheaper to run. But massively parallel software running on commodity hardware is a quite different type of product from a car. In general, the faster it goes, the cheaper it is to run.

Time Is Money
As has been noted many times in the history of computing, if you are a factor of 50x slower, then you will need 50x more nodes to run at the same speed (even assuming perfect parallelization), or your computation will need 50x more time. In either case, it will also be much more likely that you will experience at least one of your nodes crashing during a computation. This is not to argue that automatic fault tolerance and recovery should be ignored in the pursuit of speed, but rather that these two factors need to be carefully balanced. Good design in massively parallel systems is about achieving maximum speed along with the ability to recover from a given expected level of hardware failure, via checkpointing.

The key phrase here is "a given expected level of hardware failure". In certain types of peer-to-peer services which take advantage of idle PC capacity, it is necessary to assume that all machines are extremely unreliable and may go offline at any time. However, in a commercial big data cluster it may be reasonably asssumed that almost all machines will be available almost all of the time. This means that a much more optimistic point in the design space can be chosen, one which is designed much more for speed than for pathological failure scenarios.

The MapReduce model is an example of a model where speed has been sacrificed in a major way in order to achieve scalability on very unreliable hardware. As we have noted, while this is acceptable in certain types of free peer-to-peer services, it is much less acceptable in commercial big data systems deployed at scale.

Google, the inventors of the model, were the first to recognize the throughput and latency problems with the MapReduce model. To get the realtime performance they required, they recently replaced MapReduce in their Google Instant search engine.

The MapReduce model of Apache Hadoop is slow. In fact, it's very slow compared to, for example, the kinds of MPI or BSP clusters that have been routinely used in supercomputing for more than 15 years. On exactly the same hardware, MapReduce can be several orders of magnitude slower than MPI or BSP. By using MPI rather than MapReduce, HadoopBI gives customers the best possible big data solution, not only in terms of performance - massive throughput and extremely low latency - but also in terms of economics. HadoopBI is not just the fastest Big Data BI solution, it is also the cheapest at scale.

It's Free, But Is It Fast Enough?
Another frequently misunderstood element of big data economics concerns so-called "free" software. It has been argued by some that, since big data software needs to be run on many nodes, it is really important to have software that is free. Again this is an extreme oversimplification that ignores the dominant cost issues in big data economics. At large scale, software costs will in general be much smaller than hardware or cloud costs. And commercial software vendors should ensure that they are, if they want to stay in business.

Consider the following small-scale example. A company needs to process big data continuously in order to maximize competitive advantage. For simplicity, we will assume that the cost of running a single server (in-house or cloud) for one hour is $1, and that the company has a choice between two big data software systems - system A costs $1,000 per server and system B is free, but system A is 8x faster. Choosing system A, the company requires 5 servers, working continuously, to achieve the throughput required. However, if the company chooses system B, it will require 40 servers running continuously.

Simple arithmetic shows that within just six days, the initial cost of system A has been recovered, and from then on system A gives the company massive cost savings. Even if system A is only 2x or 3x faster and more efficient than system B, the initial cost will still be recovered in a matter of a few weeks.

The economic advantages of speed at scale are magnified even more in large-scale big data systems where, with volume licensing discounts, the payback time for super-fast software is even shorter.

The lesson of the above example is simple and very important. In parallel systems, speed at scale is king, as speed equates to efficiency, and efficiency equates to massive cost savings at scale. So, to be relevant for large scale production deployments, free parallel software has to be at least as fast and efficient as the best commercial software, otherwise the economics will be solidly against it. Some examples of free software, such as the Linux operating system, have achieved this goal. It remains to be seen whether this will also be the case with highly parallel big data software. In the meantime, it's important to remember that "free software is cheap, but fast software can be even cheaper".

More Stories By Bill McColl

Bill McColl left Oxford University to found Cloudscale. At Oxford he was Professor of Computer Science, Head of the Parallel Computing Research Center, and Chairman of the Computer Science Faculty. Along with Les Valiant of Harvard, he developed the BSP approach to parallel programming. He has led research, product, and business teams, in a number of areas: massively parallel algorithms and architectures, parallel programming languages and tools, datacenter virtualization, realtime stream processing, big data analytics, and cloud computing. He lives in Palo Alto, CA.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@CloudExpo Stories
Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more business becomes digital the more stakeholders are interested in this data including how it relates to business. Some of these people have never used a monitoring tool before. They have a question on their mind like “How is my application doing” but no id...
Personalization has long been the holy grail of marketing. Simply stated, communicate the most relevant offer to the right person and you will increase sales. To achieve this, you must understand the individual. Consequently, digital marketers developed many ways to gather and leverage customer information to deliver targeted experiences. In his session at @ThingsExpo, Lou Casal, Founder and Principal Consultant at Practicala, discussed how the Internet of Things (IoT) has accelerated our abil...
With so much going on in this space you could be forgiven for thinking you were always working with yesterday’s technologies. So much change, so quickly. What do you do if you have to build a solution from the ground up that is expected to live in the field for at least 5-10 years? This is the challenge we faced when we looked to refresh our existing 10-year-old custom hardware stack to measure the fullness of trash cans and compactors.
Extreme Computing is the ability to leverage highly performant infrastructure and software to accelerate Big Data, machine learning, HPC, and Enterprise applications. High IOPS Storage, low-latency networks, in-memory databases, GPUs and other parallel accelerators are being used to achieve faster results and help businesses make better decisions. In his session at 18th Cloud Expo, Michael O'Neill, Strategic Business Development at NVIDIA, focused on some of the unique ways extreme computing is...
The emerging Internet of Everything creates tremendous new opportunities for customer engagement and business model innovation. However, enterprises must overcome a number of critical challenges to bring these new solutions to market. In his session at @ThingsExpo, Michael Martin, CTO/CIO at nfrastructure, outlined these key challenges and recommended approaches for overcoming them to achieve speed and agility in the design, development and implementation of Internet of Everything solutions wi...
Cloud computing is being adopted in one form or another by 94% of enterprises today. Tens of billions of new devices are being connected to The Internet of Things. And Big Data is driving this bus. An exponential increase is expected in the amount of information being processed, managed, analyzed, and acted upon by enterprise IT. This amazing is not part of some distant future - it is happening today. One report shows a 650% increase in enterprise data by 2020. Other estimates are even higher....
With over 720 million Internet users and 40–50% CAGR, the Chinese Cloud Computing market has been booming. When talking about cloud computing, what are the Chinese users of cloud thinking about? What is the most powerful force that can push them to make the buying decision? How to tap into them? In his session at 18th Cloud Expo, Yu Hao, CEO and co-founder of SpeedyCloud, answered these questions and discussed the results of SpeedyCloud’s survey.
SYS-CON Events announced today that Isomorphic Software will exhibit at DevOps Summit at 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Isomorphic Software provides the SmartClient HTML5/AJAX platform, the most advanced technology for building rich, cutting-edge enterprise web applications for desktop and mobile. SmartClient combines the productivity and performance of traditional desktop software with the simp...
Actian Corporation has announced the latest version of the Actian Vector in Hadoop (VectorH) database, generally available at the end of July. VectorH is based on the same query engine that powers Actian Vector, which recently doubled the TPC-H benchmark record for non-clustered systems at the 3000GB scale factor (see tpc.org/3323). The ability to easily ingest information from different data sources and rapidly develop queries to make better business decisions is becoming increasingly importan...
SYS-CON Events announced today that 910Telecom will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Housed in the classic Denver Gas & Electric Building, 910 15th St., 910Telecom is a carrier-neutral telecom hotel located in the heart of Denver. Adjacent to CenturyLink, AT&T, and Denver Main, 910Telecom offers connectivity to all major carriers, Internet service providers, Internet backbones and ...
Traditional on-premises data centers have long been the domain of modern data platforms like Apache Hadoop, meaning companies who build their business on public cloud were challenged to run Big Data processing and analytics at scale. But recent advancements in Hadoop performance, security, and most importantly cloud-native integrations, are giving organizations the ability to truly gain value from all their data. In his session at 19th Cloud Expo, David Tishgart, Director of Product Marketing ...
SYS-CON Events announced today Telecom Reseller has been named “Media Sponsor” of SYS-CON's 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Telecom Reseller reports on Unified Communications, UCaaS, BPaaS for enterprise and SMBs. They report extensively on both customer premises based solutions such as IP-PBX as well as cloud based and hosted platforms.
As the world moves toward more DevOps and Microservices, application deployment to the cloud ought to become a lot simpler. The Microservices architecture, which is the basis of many new age distributed systems such as OpenStack, NetFlix and so on, is at the heart of Cloud Foundry - a complete developer-oriented Platform as a Service (PaaS) that is IaaS agnostic and supports vCloud, OpenStack and AWS. Serverless computing is revolutionizing computing. In his session at 19th Cloud Expo, Raghav...
Aspose.Total for .NET is the most complete package of all file format APIs for .NET as offered by Aspose. It empowers developers to create, edit, render, print and convert between a wide range of popular document formats within any .NET, C#, ASP.NET and VB.NET applications. Aspose compiles all .NET APIs on a daily basis to ensure that it contains the most up to date versions of each of Aspose .NET APIs. If a new .NET API or a new version of existing APIs is released during the subscription peri...
SYS-CON Events announced today that StarNet Communications will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. StarNet Communications’ FastX is the industry first cloud-based remote X Windows emulator. Using standard Web browsers (FireFox, Chrome, Safari, etc.) users from around the world gain highly secure access to applications and data hosted on Linux-based servers in a central data center. ...
DevOps at Cloud Expo, taking place Nov 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 19th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long dev...
The 19th International Cloud Expo has announced that its Call for Papers is open. Cloud Expo, to be held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, Big Data, Internet of Things, DevOps, Digital Transformation, Microservices and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportuni...
StarNet Communications Corp has announced the addition of three Secure Remote Desktop modules to its flagship X-Win32 PC X server. The new modules enable X-Win32 to safely tunnel the remote desktops from Linux and Unix servers to the user’s PC over encrypted SSH. Traditionally, users of PC X servers deploy the XDMCP protocol to display remote desktop environments such as the Gnome and KDE desktops on Linux servers and the CDE environment on Solaris Unix machines. XDMCP is used primarily on comp...
There is growing need for data-driven applications and the need for digital platforms to build these apps. In his session at 19th Cloud Expo, Muddu Sudhakar, VP and GM of Security & IoT at Splunk, will cover different PaaS solutions and Big Data platforms that are available to build applications. In addition, AI and machine learning are creating new requirements that developers need in the building of next-gen apps. The next-generation digital platforms have some of the past platform needs a...
DevOps at Cloud Expo – being held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA – announces that its Call for Papers is open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the world's largest enterprises – and delivering real results. Am...