Welcome!

@CloudExpo Authors: Kevin Jackson, Elizabeth White, AppNeta Blog, Liz McMillan, Harry Trott

Related Topics: @CloudExpo

@CloudExpo: Blog Post

The Economics of Big Data: Why Faster Software is Cheaper

Faster means better and cheaper - lower latency and lower cost!

In big data computing, and more generally in all commercial highly parallel software systems, speed matters more than just about anything else. The reason is straightforward, and has been known for decades.

Put very simply, when it comes to massively parallel software of the kind need to handle big data, fast is both better AND cheaper. Faster means lower latency AND lower cost.

At first this may seem counterintuitive. A high-end sports car will be much faster than a standard family sedan, but the family sedan may be much cheaper. Cheaper to buy, and cheaper to run. But massively parallel software running on commodity hardware is a quite different type of product from a car. In general, the faster it goes, the cheaper it is to run.

Time Is Money
As has been noted many times in the history of computing, if you are a factor of 50x slower, then you will need 50x more nodes to run at the same speed (even assuming perfect parallelization), or your computation will need 50x more time. In either case, it will also be much more likely that you will experience at least one of your nodes crashing during a computation. This is not to argue that automatic fault tolerance and recovery should be ignored in the pursuit of speed, but rather that these two factors need to be carefully balanced. Good design in massively parallel systems is about achieving maximum speed along with the ability to recover from a given expected level of hardware failure, via checkpointing.

The key phrase here is "a given expected level of hardware failure". In certain types of peer-to-peer services which take advantage of idle PC capacity, it is necessary to assume that all machines are extremely unreliable and may go offline at any time. However, in a commercial big data cluster it may be reasonably asssumed that almost all machines will be available almost all of the time. This means that a much more optimistic point in the design space can be chosen, one which is designed much more for speed than for pathological failure scenarios.

The MapReduce model is an example of a model where speed has been sacrificed in a major way in order to achieve scalability on very unreliable hardware. As we have noted, while this is acceptable in certain types of free peer-to-peer services, it is much less acceptable in commercial big data systems deployed at scale.

Google, the inventors of the model, were the first to recognize the throughput and latency problems with the MapReduce model. To get the realtime performance they required, they recently replaced MapReduce in their Google Instant search engine.

The MapReduce model of Apache Hadoop is slow. In fact, it's very slow compared to, for example, the kinds of MPI or BSP clusters that have been routinely used in supercomputing for more than 15 years. On exactly the same hardware, MapReduce can be several orders of magnitude slower than MPI or BSP. By using MPI rather than MapReduce, HadoopBI gives customers the best possible big data solution, not only in terms of performance - massive throughput and extremely low latency - but also in terms of economics. HadoopBI is not just the fastest Big Data BI solution, it is also the cheapest at scale.

It's Free, But Is It Fast Enough?
Another frequently misunderstood element of big data economics concerns so-called "free" software. It has been argued by some that, since big data software needs to be run on many nodes, it is really important to have software that is free. Again this is an extreme oversimplification that ignores the dominant cost issues in big data economics. At large scale, software costs will in general be much smaller than hardware or cloud costs. And commercial software vendors should ensure that they are, if they want to stay in business.

Consider the following small-scale example. A company needs to process big data continuously in order to maximize competitive advantage. For simplicity, we will assume that the cost of running a single server (in-house or cloud) for one hour is $1, and that the company has a choice between two big data software systems - system A costs $1,000 per server and system B is free, but system A is 8x faster. Choosing system A, the company requires 5 servers, working continuously, to achieve the throughput required. However, if the company chooses system B, it will require 40 servers running continuously.

Simple arithmetic shows that within just six days, the initial cost of system A has been recovered, and from then on system A gives the company massive cost savings. Even if system A is only 2x or 3x faster and more efficient than system B, the initial cost will still be recovered in a matter of a few weeks.

The economic advantages of speed at scale are magnified even more in large-scale big data systems where, with volume licensing discounts, the payback time for super-fast software is even shorter.

The lesson of the above example is simple and very important. In parallel systems, speed at scale is king, as speed equates to efficiency, and efficiency equates to massive cost savings at scale. So, to be relevant for large scale production deployments, free parallel software has to be at least as fast and efficient as the best commercial software, otherwise the economics will be solidly against it. Some examples of free software, such as the Linux operating system, have achieved this goal. It remains to be seen whether this will also be the case with highly parallel big data software. In the meantime, it's important to remember that "free software is cheap, but fast software can be even cheaper".

More Stories By Bill McColl

Bill McColl left Oxford University to found Cloudscale. At Oxford he was Professor of Computer Science, Head of the Parallel Computing Research Center, and Chairman of the Computer Science Faculty. Along with Les Valiant of Harvard, he developed the BSP approach to parallel programming. He has led research, product, and business teams, in a number of areas: massively parallel algorithms and architectures, parallel programming languages and tools, datacenter virtualization, realtime stream processing, big data analytics, and cloud computing. He lives in Palo Alto, CA.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@CloudExpo Stories
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform and how we integrate our thinking to solve complicated problems. In his session at 19th Cloud Expo, Craig Sproule, CEO of Metavine, demonstrated how to move beyond today's coding paradigm and ...
"Venafi has a platform that allows you to manage, centralize and automate the complete life cycle of keys and certificates within the organization," explained Gina Osmond, Sr. Field Marketing Manager at Venafi, in this SYS-CON.tv interview at DevOps at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
"We are a modern development application platform and we have a suite of products that allow you to application release automation, we do version control, and we do application life cycle management," explained Flint Brenton, CEO of CollabNet, in this SYS-CON.tv interview at DevOps at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
"ReadyTalk is an audio and web video conferencing provider. We've really come to embrace WebRTC as the platform for our future of technology," explained Dan Cunningham, CTO of ReadyTalk, in this SYS-CON.tv interview at WebRTC Summit at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
We are always online. We access our data, our finances, work, and various services on the Internet. But we live in a congested world of information in which the roads were built two decades ago. The quest for better, faster Internet routing has been around for a decade, but nobody solved this problem. We’ve seen band-aid approaches like CDNs that attack a niche's slice of static content part of the Internet, but that’s it. It does not address the dynamic services-based Internet of today. It does...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life sett...
20th Cloud Expo, taking place June 6-8, 2017, at the Javits Center in New York City, NY, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy.
WebRTC is the future of browser-to-browser communications, and continues to make inroads into the traditional, difficult, plug-in web communications world. The 6th WebRTC Summit continues our tradition of delivering the latest and greatest presentations within the world of WebRTC. Topics include voice calling, video chat, P2P file sharing, and use cases that have already leveraged the power and convenience of WebRTC.
"We're a cybersecurity firm that specializes in engineering security solutions both at the software and hardware level. Security cannot be an after-the-fact afterthought, which is what it's become," stated Richard Blech, Chief Executive Officer at Secure Channels, in this SYS-CON.tv interview at @ThingsExpo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
The Internet of Things (IoT) promises to simplify and streamline our lives by automating routine tasks that distract us from our goals. This promise is based on the ubiquitous deployment of smart, connected devices that link everything from industrial control systems to automobiles to refrigerators. Unfortunately, comparatively few of the devices currently deployed have been developed with an eye toward security, and as the DDoS attacks of late October 2016 have demonstrated, this oversight can ...
Internet-of-Things discussions can end up either going down the consumer gadget rabbit hole or focused on the sort of data logging that industrial manufacturers have been doing forever. However, in fact, companies today are already using IoT data both to optimize their operational technology and to improve the experience of customer interactions in novel ways. In his session at @ThingsExpo, Gordon Haff, Red Hat Technology Evangelist, will share examples from a wide range of industries – includin...
Unless your company can spend a lot of money on new technology, re-engineering your environment and hiring a comprehensive cybersecurity team, you will most likely move to the cloud or seek external service partnerships. In his session at 18th Cloud Expo, Darren Guccione, CEO of Keeper Security, revealed what you need to know when it comes to encryption in the cloud.
Organizations planning enterprise data center consolidation and modernization projects are faced with a challenging, costly reality. Requirements to deploy modern, cloud-native applications simultaneously with traditional client/server applications are almost impossible to achieve with hardware-centric enterprise infrastructure. Compute and network infrastructure are fast moving down a software-defined path, but storage has been a laggard. Until now.
We're entering the post-smartphone era, where wearable gadgets from watches and fitness bands to glasses and health aids will power the next technological revolution. With mass adoption of wearable devices comes a new data ecosystem that must be protected. Wearables open new pathways that facilitate the tracking, sharing and storing of consumers’ personal health, location and daily activity data. Consumers have some idea of the data these devices capture, but most don’t realize how revealing and...
"We are an all-flash array storage provider but our focus has been on VM-aware storage specifically for virtualized applications," stated Dhiraj Sehgal of Tintri in this SYS-CON.tv interview at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
"We build IoT infrastructure products - when you have to integrate different devices, different systems and cloud you have to build an application to do that but we eliminate the need to build an application. Our products can integrate any device, any system, any cloud regardless of protocol," explained Peter Jung, Chief Product Officer at Pulzze Systems, in this SYS-CON.tv interview at @ThingsExpo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
It's easy to assume that your app will run on a fast and reliable network. The reality for your app's users, though, is often a slow, unreliable network with spotty coverage. What happens when the network doesn't work, or when the device is in airplane mode? You get unhappy, frustrated users. An offline-first app is an app that works, without error, when there is no network connection. In his session at 18th Cloud Expo, Bradley Holt, a Developer Advocate with IBM Cloud Data Services, discussed...
Data is the fuel that drives the machine learning algorithmic engines and ultimately provides the business value. In his session at 20th Cloud Expo, Ed Featherston, director/senior enterprise architect at Collaborative Consulting, will discuss the key considerations around quality, volume, timeliness, and pedigree that must be dealt with in order to properly fuel that engine.
Between 2005 and 2020, data volumes will grow by a factor of 300 – enough data to stack CDs from the earth to the moon 162 times. This has come to be known as the ‘big data’ phenomenon. Unfortunately, traditional approaches to handling, storing and analyzing data aren’t adequate at this scale: they’re too costly, slow and physically cumbersome to keep up. Fortunately, in response a new breed of technology has emerged that is cheaper, faster and more scalable. Yet, in meeting these new needs they...
In addition to all the benefits, IoT is also bringing new kind of customer experience challenges - cars that unlock themselves, thermostats turning houses into saunas and baby video monitors broadcasting over the internet. This list can only increase because while IoT services should be intuitive and simple to use, the delivery ecosystem is a myriad of potential problems as IoT explodes complexity. So finding a performance issue is like finding the proverbial needle in the haystack.