Welcome!

@CloudExpo Authors: Liz McMillan, Zakia Bouachraoui, Yeshim Deniz, Pat Romanski, Elizabeth White

Related Topics: @CloudExpo

@CloudExpo: Blog Feed Post

The Three Vs of Big Data

Data-intensive computing to unify, theorize, experiment, and do simulation at scale

Big Data is a top technology trend for 2012 according to Forrester Research. The Economist said that Big Data is a new game changing asset and The Harvard Business Review termed it as a scientific revolution. Scientific Revolution? Because it is data-intensive computing to unify, theorize, experiment, and do simulation at scale.

It is also termed the Fourth Paradigm – “The techniques and technologies for such data-intensive science are so different that it is worth distinguishing data-intensive science from computational science as a new, fourth paradigm for scientific exploration.”



Big Data is when the size of the data itself becomes part of the problem. But Big Data is not just “big”. There are the 3V’s of Big Data:

  1. Volume – Terabyte records, transactions, tables, files. A Boeing Jet engine spews out 10TB of operational data for every 30 minutes they run. Hence a 4-engine Jumbo jet can create 640TB on one Atlantic crossing. Multiply that to 25,000 flights flown each day and you get the picture.
  2. Velocity – batch, near-time, real-time, streams. Today’s on-line ad serving requires 40ms to respond with a decision. Financial services need near 1MS to calculate customer scoring probabilities. Stream data, such as movies, need to  travel at high speed for proper rendering.
  3. Variety – structures, unstructured, semi-structured, and all the above in a mix. WalMart processes 1M customer transactions per hour and feeds information to a database estimated at 2.5PB (petabytes). There are old and new data sources like RFID, sensors, mobile payments, in-vehicle tracking, etc.

Because of these characteristics, traditional DBMS solutions are inadequate. Hence we have seen the growth of technologies such as Hadoop (map-reduce algorithm started at Google) mostly processing unstructured data in batch mode. New solutions are needed for realtime processing.

See my blog from last year on this subject.

More Stories By Jnan Dash

Jnan Dash is Senior Advisor at EZShield Inc., Advisor at ScaleDB and Board Member at Compassites Software Solutions. He has lived in Silicon Valley since 1979. Formerly he was the Chief Strategy Officer (Consulting) at Curl Inc., before which he spent ten years at Oracle Corporation and was the Group Vice President, Systems Architecture and Technology till 2002. He was responsible for setting Oracle's core database and application server product directions and interacted with customers worldwide in translating future needs to product plans. Before that he spent 16 years at IBM. He blogs at http://jnandash.ulitzer.com.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


CloudEXPO Stories
With more than 30 Kubernetes solutions in the marketplace, it's tempting to think Kubernetes and the vendor ecosystem has solved the problem of operationalizing containers at scale or of automatically managing the elasticity of the underlying infrastructure that these solutions need to be truly scalable. Far from it. There are at least six major pain points that companies experience when they try to deploy and run Kubernetes in their complex environments. In this presentation, the speaker will detail these pain points and explain how cloud can address them.
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-centric compute for the most data-intensive applications. Hyperconverged systems already in place can be revitalized with vendor-agnostic, PCIe-deployed, disaggregated approach to composable, maximizing the value of previous investments.
When building large, cloud-based applications that operate at a high scale, it's important to maintain a high availability and resilience to failures. In order to do that, you must be tolerant of failures, even in light of failures in other areas of your application. "Fly two mistakes high" is an old adage in the radio control airplane hobby. It means, fly high enough so that if you make a mistake, you can continue flying with room to still make mistakes. In his session at 18th Cloud Expo, Lee Atchison, Principal Cloud Architect and Advocate at New Relic, discussed how this same philosophy can be applied to highly scaled applications, and can dramatically increase your resilience to failure.
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by sharing information within the building and with outside city infrastructure via real time shared cloud capabilities.
As Cybric's Chief Technology Officer, Mike D. Kail is responsible for the strategic vision and technical direction of the platform. Prior to founding Cybric, Mike was Yahoo's CIO and SVP of Infrastructure, where he led the IT and Data Center functions for the company. He has more than 24 years of IT Operations experience with a focus on highly-scalable architectures.