Welcome!

@CloudExpo Authors: Pat Romanski, Liz McMillan, Elizabeth White, Yeshim Deniz, Zakia Bouachraoui

Related Topics: @CloudExpo, Microservices Expo, Open Source Cloud, Containers Expo Blog

@CloudExpo: Article

Big Data Brings Big Changes

Searching for data scientists as a service

It’s no secret that rocket .. err … data scientists are in short supply. The explosion of data and the corresponding explosion of tools, and the knock-on impacts of Moore’s and Metcalfe’s laws, is that there is more data, more connections, and more technology to process it than ever. At last year’s Hadoop World, there was a feeding frenzy for data scientists, which only barely dwarfed demand for the more technically oriented data architects. In English, that means:

  1. Potential MacArthur Grant recipients who have a passion and insight for data, the mathematical and statistical prowess for ginning up the algorithms, and the artistry for painting the picture that all that data leads to. That’s what we mean by data scientists.
  2. People who understand the platform side of Big Data, a.k.a., data architect or data engineer.

The data architect side will be the more straightforward nut to crack. Understanding big data platforms (Hadoop, MongoDB, Riak) and emerging Advanced SQL offerings (Exadata, Netezza, Greenplum, Vertica, and a bunch of recent upstarts like Calpont) is a technical skill that can be taught with well-defined courses. The laws of supply and demand will solve this one – just as they did when the dot com bubble created demand for Java programmers back in 1999.

Behind all the noise for Hadoop programmers, there’s a similar, but quieter desperate rush to recruit data scientists. While some data scientists call data scientist a buzzword, the need is real.

It’s all about connecting the dots, not as easy as it sounds.

However, data science will be a tougher number to crack. It’s all about connecting the dots, not as easy as it sounds. The V’s of big data – volume, variety, velocity, and value — require someone who discovers insights from data; traditionally, that role was performed by the data miner. But data miners dealt with better-bounded problems and well-bounded (and known) data sets that made the problem more 2-dimensional.

The variety of Big Data – in form and in sources – introduces an element of the unknown. Deciphering Big Data requires a mix of investigative savvy, communications skills, creativity/artistry, and the ability to think counter-intuitively. And don’t forget it all comes atop a foundation of a solid statistical and machine learning background plus technical knowledge of the tools and programming languages of the trade.

Sometimes it seems like we’re looking for Albert Einstein or somebody smarter.

Nature abhors a vacuum

As nature abhors a vacuum, there’s also a rush to not only define what a data scientist is, but develop programs that could somehow teach it, software packages that to some extent package it, and otherwise throw them into a meat … err, the free market. EMC and other vendors are stepping up to the plate to offer training, not just on platforms, but for data science. Kaggle offers an innovative cloud-based, crowdsourced approach to data science, making available a predictive modeling platform and then staging sponsored 24-hour competitions for moonlighting data scientists to devise the best solutions to particular problems (redolent of the Netflix $1 million prize to devise a smarter algorithm for predicting viewer preferences).

With data science talent scarce, we’d expect that consulting firms would buy up talent that could then be “rented’ to multiple clients. Excluding a few offshore firms, few systems integrators (SIs) have yet stepped up to the plate to roll out formal big data practices (the logical place where data scientists would reside), but we expect that to change soon.

Opera Solutions, which has been in the game of predictive analytics consulting since 2004, is taking the next step down the packaging route. having raised $84 million in Series A funding last year, the company has staffed up to nearly 200 data scientists, making it one of the largest assemblages of genius this side of Google. Opera’s predictive analytics solutions are designed for a variety of platforms, SQL and Hadoop, and today they join the SAP Sapphire announcement stream with a release of their offering on the HANA in-memory database. Andrew Brust provides a good drilldown on the details on this announcement.

With market demand, there will inevitably be a watering down of the definition of data scientists so that more companies can claim they’ve got one… or many.

From SAP’s standpoint, Opera’s predictive analytics solutions are a logical fit for HANA as they involve the kinds of complex problems (e.g., a computation triggers other computations) that their new in-memory database platform was designed for.

There’s too much value at stake to expect that Opera will remain the only large aggregation of data scientists for hire. But ironically, the barriers to entry will keep the competition narrow and highly concentrated. Of course, with market demand, there will inevitably be a watering down of the definition of data scientists so that more companies can claim they’ve got one… or many.

The laws of supply and demand will kick in for data scientists, but the ramp up of supply won’t be as quick as that for the more platform-oriented data architect or engineer. Of necessity, that supply of data scientists will have to be augmented by software that automates the interpretation of machine learning, but there’s only so far that you can program creativity and counter-intuitive insight into a machine.

You may also be interested in:

More Stories By Tony Baer

Tony Baer is Principal Analyst with Ovum, leading Ovum’s research on the software lifecycle. Working in concert with other members of Ovum’s software group, his research covers the full lifecycle from design and development to deployment and management. Areas of focus include application lifecycle management, software development methodologies (including agile), SOA, IT service management/ITIL, and IT management/governance.

Baer has been a noted authority on software development platforms and integration architecture for nearly 20 years. Prior to joining Ovum, he was an independent analyst whose company ‘onStrategies’ delivered software development and integration tools to vendors with technology assessment and market positioning services. He also led Computerwire’s CIO Agenda and Computer Finance end-user best practices research services.

Follow him on Twitter @TonyBaer or read his blog site www.onstrategies.com/blog.

CloudEXPO Stories
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by FTC, CUI/DFARS, EU-GDPR and the underlying National Cybersecurity Framework suggest the need for a ground-up re-thinking of security strategies and compliance actions. This session offers actionable advice based on case studies to demonstrate the impact of security and privacy attributes for the cloud-backed IoT and AI ecosystem.
Enterprise architects are increasingly adopting multi-cloud strategies as they seek to utilize existing data center assets, leverage the advantages of cloud computing and avoid cloud vendor lock-in. This requires a globally aware traffic management strategy that can monitor infrastructure health across data centers and end-user experience globally, while responding to control changes and system specification at the speed of today’s DevOps teams. In his session at 20th Cloud Expo, Josh Gray, Chief Architect at Cedexis, covered strategies for orchestrating global traffic achieving the highest-quality end-user experience while spanning multiple clouds and data centers and reacting at the velocity of modern development teams.
"We host and fully manage cloud data services, whether we store, the data, move the data, or run analytics on the data," stated Kamal Shannak, Senior Development Manager, Cloud Data Services, IBM, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
In this Women in Technology Power Panel at 15th Cloud Expo, moderated by Anne Plese, Senior Consultant, Cloud Product Marketing at Verizon Enterprise, Esmeralda Swartz, CMO at MetraTech; Evelyn de Souza, Data Privacy and Compliance Strategy Leader at Cisco Systems; Seema Jethani, Director of Product Management at Basho Technologies; Victoria Livschitz, CEO of Qubell Inc.; Anne Hungate, Senior Director of Software Quality at DIRECTV, discussed what path they took to find their spot within the technology industry and how do they see opportunities for other women in their area of expertise.
To Really Work for Enterprises, MultiCloud Adoption Requires Far Better and Inclusive Cloud Monitoring and Cost Management … But How? Overwhelmingly, even as enterprises have adopted cloud computing and are expanding to multi-cloud computing, IT leaders remain concerned about how to monitor, manage and control costs across hybrid and multi-cloud deployments. It’s clear that traditional IT monitoring and management approaches, designed after all for on-premises data centers, are falling short in this new hybrid and dynamic environment.