Click here to close now.

Welcome!

@CloudExpo Authors: Liz McMillan, Elizabeth White, John Mancini, Pat Romanski, Tom Lounibos

Related Topics: SDN Journal, Java IoT, Industrial IoT, @MicroservicesE Blog, Containers Expo, @CloudExpo

SDN Journal: Article

Software Defined Networking – A Paradigm Shift

Now it's all about orchestrated service delivery

The networking industry has gone through different waves over last 30+ years. In the '80s, the first wave was all about connecting and sharing; how to connect a computer to other peripheral devices and other computers. There were many players who developed technology and services to address that, e.g. Novell, 3Com, Sun, IBM, DEC, Nortel. Across the industry, small islands of various protocols were created with multiple gateways to bridge them.

In 90's and 00's, Cisco dominated the industry and did a brilliant job of pushing the industry towards a common approach built on Ethernet.  They built a hugely successful business and ecosystem and even created new markets like VoIP on the proposition that networking should be on a common highway. We also saw isolation of networks from the rest of the IT infrastructure, in the sense that software innovations continued in the server and storage environments independent of the network area. The focus also remained on different components of the infrastructure and not on the ‘service' delivered by the combination of those infrastructure components, i.e., server, storage and network.

Now, it is all about orchestrated service delivery which requires standards-based open approach. According to Gartner reports on Emerging Technology Analysis and Key Issues for Communications Strategies, a) over 50% workloads will be virtualized by the end of 2012 thanks to Cloud computing, and b) more than 80% of traffic will be server-to-server by 2014 due to federated applications and virtualization.

In this article, I attempt to highlight why we have reached limits of current network technology, how Software Defined Networking will lead the next wave of innovations and its benefits to the IT industry. Today, network elements like switches and routers have resident software in each box. The software in the box provides intelligence using distributed algorithms to decide how each packet should be handled by it. In order for the entire network to function properly, the software in each box must work in coordination with other boxes.  This approach has served us well so far.

The coordinated distributed algorithms however make it difficult to introduce a change on the fly. We have to reconfigure the embedded software on all network components (often called boxes) to implement any change.  On the other hand, the wave of virtualization demands flexible, adaptive and nimble networks. This wave exposes limitations of the current networking approach, which is inflexible and protocol-heavy. As distributed algorithms are used, not one box has a global view of the network. This results in over provisioning at the time of designing and guess-work while trouble-shooting. For large cloud deployments, compute and storage environments can be virtualized and consumed easily but because of the limitations of networks, its full potential is not realized.

Typically, a network administrator spends a lot of time planning and then configuring the network components with changing business requirements and varying network traffic. Network administrators learn a lot by trial and error and the resulting expertise based on experience is limited to the experienced few.

OpenFlow History
Research students at Stanford, Berkley and other universities found it hard to experiment with their networks because the software is embedded in each switch or a router and any change has to be coordinated between vendors to make the distributed algorithms interoperable to provide the functionality they needed for research & experimentation. It is with this simple objective that the idea of OpenFlow was born. The first step that these researchers took was to develop ability to program switches, from a remote controller. The OpenFlow protocol was developed to support communication between a switch and a controller. It allows external control software to control the data path of a switch, bypassing traditional L2 and L3 protocols and associated configurations. OpenFlow protocol defines messages, such as packet-received, send-packet-out, modify-forwarding-table, and get-stats. The researchers added OpenFlow support to existing boxes and allowed OpenFlow controller to program part of Flow-Table entries for research and experimentation while rest of the box worked as before. This gave them control over switches from a controller running on a remote industry standard server. This was the start of OpenFlow which basically separated the physical or data layer from the control layer.

ONF Background
OpenFlow and SDN became quite popular in the research community and several service providers and some vendors started to see the value of this approach. Researchers from Stanford and Berkeley took the lead but Open Networking Foundation (ONF) was founded by leading providers (Google, Yahoo!, Microsoft, Facebook, Deutsche Telecom, and Verizon). Some vendors, like HP, expressed their support from the beginning. ONF is the body which defines, standardizes and enhances OpenFlow protocol. ONF has a bigger charter with SDN that goes beyond OpenFlow protocol. It promotes SDN and may standardize different parts of SDN. As a policy, vendors cannot join its board but can become members of ONF and lead some working groups. Vendors have influence over the emerging standard though they don't set the overall agenda and they don't make final decisions on what is standardized and what is not.

Another interesting point is that ONF wants to do as little standardization as possible to encourage creativity. At first it sounded a bit conflicting but ONF looks at the software industry and tries to follow it by taking its best practices. When you look at the software industry, there are fewer standards than the network industry and it has created more innovations and jobs than the network industry. The Network industry has too many protocols defined and standardized, resulting in more complexity and fewer innovations. Academicians are influencing ONF and ensuring that we don't end up with another rigid, inflexible and protocol heavy networking world. ONF has 66 members today and its membership costs $30k/year. This is relatively high compared to other such bodies and the reason could be to ensure that only genuinely interested parties become members. We know that breakthrough innovations would come from small start-ups, some of whom would find it difficult to spend so much for the annual membership.  On the other hand, ONF ensures that the development made as part of their body is made available to all members at no charge or royalty etc. One would end up spending more than $30k in lawyer's fees to get the royalty arrangements sorted out.

Early Adopters
Google, Amazon, Rackspace, etc., have already implemented OpenFlow based networks, using proprietary hardware and in-house developed software. We see many new start-up focused on this new area to develop applications that leverage virtualized network. Most cloud providers manage huge data centers. "Every day Amazon Web Services (AWS) adds enough new capacity to support all of Amazon.com's global infrastructure through the company's first 5 years, when it was a $2.76 billion annual revenue enterprise" according to Jim Hamilton, their VP at large.

Google embraced OpenFlow very early on. Google's inter-datacenter production network, largest in the world by traffic, runs on OpenFlow and SDN. Google proved that OpenFlow based networks can scale and deliver its promise. The biggest use case, according to Google, for Central controllers is the fact that we can do re-routing, anticipating an event, e.g. if we know that we are introducing a new service which will lead to traffic load, we can pre-provision network in a way to best optimize infrastructure resources. If a small business, say a Flower shop, expects more traffic and compute power on a Valentine day, it is easy to have compute and storage power made available with standard virtualization technology available today. But to make network resources available on demand is challenging. This is where an OpenFlow controller controlling switches can easily provide necessary bandwidth and then tear it down or redirect the network resources for other requests. Google example is impressive but one could argue that how many enterprise customers could afford or dare to do what Google can do. Moreover, just because it made a business case for Google does not mean that it can make a business case for everyone. Each customer will have to evaluate their network, future growth requirements etc and see if there is a positive business case.

Flexibility Galore
Software Defined Networking (SDN) can help you make the network ready for Cloud-bursting as and when required. SDN opens up many possibilities. For example;

  1. Packet Flow redirection: There is a lot of video traffic coming from sources we trust. Security services on such traffic are not required for some applications. As security services are extremely infrastructure-hungry and CPU-intensive, passing all data to it leads to a sprawl of security devices (many IDS/ IPS, DPI appliances) to monitor traffic. With OpenFlow we can easily redirect traffic away from the costly resources for trusted traffic.
  2. Policy Management: Because you now have global view of the network and can control the network with software running on OpenFlow controller, defining and implementing business policies become easier, e.g. better bandwidth management: In case of excess traffic which is not anticipated, the controller can make sure to program the network in such a way that higher priority business traffic is given more resources than low priority traffic.
  3. Virtual Application Network: The OpenFlow controller lets us create virtual networks for different applications on one physical network, such that different applications can have different bandwidth and QoS based on their requirements, with auditable network isolation between applications and simpler compliance (a requirement for the financial industry). One can provide each customer a separate virtual domain for them to manage
  4. Network Security: OpenFlow can be used to make networks more secure and agile. The OpenFlow controller allows us to monitor and manage network security and
    -Dynamically insert security services at any point in the network (on-demand firewall or IDS/IPS, for example)
    -Monitor traffic and re-direct suspect flows for full inspection
    -Combine per-flow QoS control with network management systems to leverage traffic and end-user identity information
    -Dynamically detect and mitigate attacks due to infected PCs by using  signature/reputation database to create rules that address specific attacks
  5. Proprietary Appliances: It is very common today to deploy appliances in the network to deliver specific functionalities. These proprietary appliances can be replaced with an OpenFlow controller and a software application delivering the specific functionality. Communication Service Providers have a significant number of network services that can take advantage of virtualization and industry standard servers. Many application specific appliances that are running on custom ASIC (WAN optimization, Firewalls, DPI, SPAM/MAIL appliances, IDS etc) are good candidates for the SDN approach.
  6. As SDN matures, a couple of years down the road, more futuristic use case is to monitor traffic patterns, generate intelligence and then use the intelligence to anticipate traffic patterns and  optimize available resources. Using this kind of intelligence, we can actually reduce power consumption, too. For example, if we know the usage of the network is less during the nights and early mornings, we can shut off parts of the network in such a way that we still get complete connectivity, yet not have the complete network up.

My Take
The list of use cases is growing on a daily basis and will continue to grow even faster as the pace of innovation increases. The number of new start-ups in this area is increasing rapidly. Finally, the networking field, which has been quite dull from the perspective of new innovations, is going to be more vibrant and exciting with new possibilities. Moreover, if ONF is successful in maintaining ‘Open standards', SDN will allow plug and play with multivendor products, empowering IT and Network operators to be more cost-effective and adaptive to agility requirements of a business. We will see that with SDN, the network industry will mirror the innovations and developments seen in the server and storage fields.

Some vendors want to have API's well-defined for applications to leverage OpenFlow controllers or have more protocols supported. It is prudent on the part of ONF not to define and standardize too much and let the market define what an acceptable standard is. It is important to keep OpenFlow protocol unrestricted by defining and standardizing not more than what is absolutely required. This will fuel innovations.

OpenFlow protocol is in its infancy but it has generated tremendous interest from customers, researchers as well as vendors. One can argue that it is not fully matured or ready for prime time but most agree that it will change the network industry fundamentally. It will make the industry more flexible, nimble and drive more innovations. This train has left the station while some debate that its destination is not well-defined or its ETA is not known. The hardware vendors will have to accept the fact that networking hardware will be commoditized just like servers and storage. OpenFlow/SDN, for sure, opens up opportunities for different network based applications. This is where current vendors will have to focus on to continue to play a major role in the future. Network administrators will not be spending hours reconfiguring switches and routers. They will have to get skilled on how to control, manage, test and implement changes from a central controller.

Although the OpenFlow protocol is defined, there are not many vendors in the market supporting its latest version 1.3. Moreover, there is a lack of tools to test, monitor and manage this new environment. HP and other major vendors have openly embraced OpenFlow and are investing in it. HP was one of the first major network vendors to invest in this area, with 60+ deployments of 16 different switches supporting OpenFlow. HP is also leading one of the task forces of ONF to evolve the OpenFlow protocol. With its traditional strength in IT performance & operations (test, monitor and manage) management and telecom OSS, HP is well-positioned to deliver a complete future-proof infrastructure solution, (consisting of server, storage, networking, software, security and analytics) for enterprise IT as well as telecom service providers.

More Stories By Kapil Raval

Kapil Raval is an experienced technology solutions consultant with nearly 20 years of experience in the telecom industry. He thinks ‘the business’ and focuses on linking business challenges to technology solutions. He currently works for HP and drives strategic solutions in the telecom vertical.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@CloudExpo Stories
Containers have changed the mind of IT in DevOps. They enable developers to work with dev, test, stage and production environments identically. Containers provide the right abstraction for microservices and many cloud platforms have integrated them into deployment pipelines. DevOps and Containers together help companies to achieve their business goals faster and more effectively. In his session at DevOps Summit, Ruslan Synytsky, CEO and Co-founder of Jelastic, reviewed the current landscape of...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at @ThingsExpo, James Kirkland, Red Hat's Chief Arch...
IT data is typically silo'd by the various tools in place. Unifying all the log, metric and event data in one analytics platform stops finger pointing and provides the end-to-end correlation. Logs, metrics and custom event data can be joined to tell the holistic story of your software and operations. For example, users can correlate code deploys to system performance to application error codes. In his session at DevOps Summit, Michael Demmer, VP of Engineering at Jut, will discuss how this can...
The last decade was about virtual machines, but the next one is about containers. Containers enable a service to run on any host at any time. Traditional tools are starting to show cracks because they were not designed for this level of application portability. Now is the time to look at new ways to deploy and manage applications at scale. In his session at @DevOpsSummit, Brian “Redbeard” Harrington, a principal architect at CoreOS, will examine how CoreOS helps teams run in production. Attende...
Containers are revolutionizing the way we deploy and maintain our infrastructures, but monitoring and troubleshooting in a containerized environment can still be painful and impractical. Understanding even basic resource usage is difficult – let alone tracking network connections or malicious activity. In his session at DevOps Summit, Gianluca Borello, Sr. Software Engineer at Sysdig, will cover the current state of the art for container monitoring and visibility, including pros / cons and liv...
Live Webinar with 451 Research Analyst Peter Christy. Join us on Wednesday July 22, 2015, at 10 am PT / 1 pm ET In a world where users are on the Internet and the applications are in the cloud, how do you maintain your historic SLA with your users? Peter Christy, Research Director, Networks at 451 Research, will discuss this new network paradigm, one in which there is no LAN and no WAN, and discuss what users and network administrators gain and give up when migrating to the agile world of clo...
Agile, which started in the development organization, has gradually expanded into other areas downstream - namely IT and Operations. Teams – then teams of teams – have streamlined processes, improved feedback loops and driven a much faster pace into IT departments which have had profound effects on the entire organization. In his session at DevOps Summit, Anders Wallgren, Chief Technology Officer of Electric Cloud, will discuss how DevOps and Continuous Delivery have emerged to help connect dev...
WebRTC converts the entire network into a ubiquitous communications cloud thereby connecting anytime, anywhere through any point. In his session at WebRTC Summit,, Mark Castleman, EIR at Bell Labs and Head of Future X Labs, will discuss how the transformational nature of communications is achieved through the democratizing force of WebRTC. WebRTC is doing for voice what HTML did for web content.
The Internet of Things is not only adding billions of sensors and billions of terabytes to the Internet. It is also forcing a fundamental change in the way we envision Information Technology. For the first time, more data is being created by devices at the edge of the Internet rather than from centralized systems. What does this mean for today's IT professional? In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists addressed this very serious issue of pro...
"A lot of the enterprises that have been using our systems for many years are reaching out to the cloud - the public cloud, the private cloud and hybrid," stated Reuven Harrison, CTO and Co-Founder of Tufin, in this SYS-CON.tv interview at 16th Cloud Expo, held June 9-11, 2015, at the Javits Center in New York City.
"We got started as search consultants. On the services side of the business we have help organizations save time and save money when they hit issues that everyone more or less hits when their data grows," noted Otis Gospodnetić, Founder of Sematext, in this SYS-CON.tv interview at @DevOpsSummit, held June 9-11, 2015, at the Javits Center in New York City.
Internet of Things (IoT) will be a hybrid ecosystem of diverse devices and sensors collaborating with operational and enterprise systems to create the next big application. In their session at @ThingsExpo, Bramh Gupta, founder and CEO of robomq.io, and Fred Yatzeck, principal architect leading product development at robomq.io, discussed how choosing the right middleware and integration strategy from the get-go will enable IoT solution developers to adapt and grow with the industry, while at th...
"We have a tagline - "Power in the API Economy." What that means is everything that is built in applications and connected applications is done through APIs," explained Roberto Medrano, Executive Vice President at Akana, in this SYS-CON.tv interview at 16th Cloud Expo, held June 9-11, 2015, at the Javits Center in New York City.
Internet of Things is moving from being a hype to a reality. Experts estimate that internet connected cars will grow to 152 million, while over 100 million internet connected wireless light bulbs and lamps will be operational by 2020. These and many other intriguing statistics highlight the importance of Internet powered devices and how market penetration is going to multiply many times over in the next few years.
In his session at 16th Cloud Expo, Simone Brunozzi, VP and Chief Technologist of Cloud Services at VMware, reviewed the changes that the cloud computing industry has gone through over the last five years and shared insights into what the next five will bring. He also chronicled the challenges enterprise companies are facing as they move to the public cloud. He delved into the "Hybrid Cloud" space and explained why every CIO should consider ‘hybrid cloud' as part of their future strategy to achi...
"We help to transform an organization and their operations and make them more efficient, more agile, and more nimble to move into the cloud or to move between cloud providers and create an agnostic tool set," noted Jeremy Steinert, DevOps Services Practice Lead at WSM International, in this SYS-CON.tv interview at @DevOpsSummit, held June 9-11, 2015, at the Javits Center in New York City.
The basic integration architecture, as defined by ESBs, hasn’t changed for more than a decade. Most cloud integration providers still rely on an ESB architecture and their proprietary connectors. As a result, enterprise integration projects suffer from constraints of availability and reliability of these connectors that are not re-usable across other integration vendors. However, the rapid adoption of APIs and almost ubiquitous availability of APIs amongst most SaaS and Cloud applications are ra...
"What Dyn is able to do with our Internet performance and our Internet intelligence is give companies visibility into what is actually going on in that cloud," noted Corey Hamilton, Product Marketing Manager at Dyn, in this SYS-CON.tv interview at 16th Cloud Expo, held June 9-11, 2015, at the Javits Center in New York City.
Manufacturing has widely adopted standardized and automated processes to create designs, build them, and maintain them through their life cycle. However, many modern manufacturing systems go beyond mechanized workflows to introduce empowered workers, flexible collaboration, and rapid iteration. Such behaviors also characterize open source software development and are at the heart of DevOps culture, processes, and tooling.
Today air travel is a minefield of delays, hassles and customer disappointment. Airlines struggle to revitalize the experience. GE and M2Mi will demonstrate practical examples of how IoT solutions are helping airlines bring back personalization, reduce trip time and improve reliability. In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect with GE, and Dr. Sarah Cooper, M2Mi’s VP Business Development and Engineering, will explore the IoT cloud-based platform technologies drivi...