Welcome!

@CloudExpo Authors: Zakia Bouachraoui, Elizabeth White, Liz McMillan, William Schmarzo, Pat Romanski

Related Topics: @CloudExpo, Java IoT, Microservices Expo, Agile Computing

@CloudExpo: Blog Feed Post

Data Clouds Part II: My Big Data Dashboard

Database monitoring used to be easy in the days before data clouds

In my previous blog, I wrote at length about the complexities of running a data cloud in production. This logical data set, spread across many nodes, requires a whole new set of tools and methodologies to run and maintain. Today we’ll look at one of the biggest challenges in managing a data cloud – monitoring.

Database monitoring used to be easy in the days before data clouds. Datasets were stored in a single large database, and there were hundreds of off-the-shelf products available to monitor the performance of that database. When problems occurred, one had simply to open up the monitoring tool and look at a set of graphs and metrics to diagnose the problem.

There are no off-the-shelf tools for monitoring a data cloud, however. There’s no easy way to get a comprehensive view of your entire data cloud, let alone diagnose problems and monitor performance. Database monitoring solutions simply don’t cut it in this kind of environment. So how do we monitor the performance of our data cloud? I’ll tell you what I did.

It just so happens I work at AppDynamics, one of the most powerful application monitoring tools on the market. We monitor all parts of your application including the data layer, with visibility into both Relational and NoSQL systems like Cassandra. With AppDynamics I was able to create a dashboard that gives me a single pane-of-glass view into the performance of my data cloud.

Big Data Dashboard

My Big Data Dashboard
This dashboard is now used in several departments at AppDynamics including Operations, QA, Performance and development teams to see how our data cloud is running. All key metrics about all of our replicas are graphed side by side on one screen. This is the dream of anyone running big data systems in production!

Of course, not all problems are system wide. More often than not you need to drill into one replica or replica set to find a problem. To do that, I simply double click on any part of my big data dashboard to focus on a single replica, change the time range, and add more metrics.

Data clouds are difficult to run, and there aren’t any database monitoring tools fit to monitor them yet. But instead of sitting around waiting for data monitoring tools to catch up with our needs, I’ve built my own Big Data Dashboard with monitoring tool designed for applications.

Of course the fun doesn’t stop here…I still need to find a way to set up alerts and do performance tuning for my data cloud. Stay tuned for more blogs in this series to see how I do it!

Read the original blog entry...

More Stories By AppDynamics Blog

In high-production environments where release cycles are measured in hours or minutes — not days or weeks — there's little room for mistakes and no room for confusion. Everyone has to understand what's happening, in real time, and have the means to do whatever is necessary to keep applications up and running optimally.

DevOps is a high-stakes world, but done well, it delivers the agility and performance to significantly impact business competitiveness.

CloudEXPO Stories
At CloudEXPO Silicon Valley, June 24-26, 2019, Digital Transformation (DX) is a major focus with expanded DevOpsSUMMIT and FinTechEXPO programs within the DXWorldEXPO agenda. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term. A total of 88% of Fortune 500 companies from a generation ago are now out of business. Only 12% still survive. Similar percentages are found throughout enterprises of all sizes.
OpsRamp is an enterprise IT operation platform provided by US-based OpsRamp, Inc. It provides SaaS services through support for increasingly complex cloud and hybrid computing environments from system operation to service management. The OpsRamp platform is a SaaS-based, multi-tenant solution that enables enterprise IT organizations and cloud service providers like JBS the flexibility and control they need to manage and monitor today's hybrid, multi-cloud infrastructure, applications, and workloads, including Microsoft Azure. We are excited to partner with JBS and look forward to a long and successful relationship.
Apptio fuels digital business transformation. Technology leaders use Apptio's machine learning to analyze and plan their technology spend so they can invest in products that increase the speed of business and deliver innovation. With Apptio, they translate raw costs, utilization, and billing data into business-centric views that help their organization optimize spending, plan strategically, and drive digital strategy that funds growth of the business. Technology leaders can gather instant recommendations that result in up to 30% saving on cloud services. For more information, please visit www.Apptio.com.
The Master of Science in Artificial Intelligence (MSAI) provides a comprehensive framework of theory and practice in the emerging field of AI. The program delivers the foundational knowledge needed to explore both key contextual areas and complex technical applications of AI systems. Curriculum incorporates elements of data science, robotics, and machine learning-enabling you to pursue a holistic and interdisciplinary course of study while preparing for a position in AI research, operations, software or hardware development, or doctoral degree in a sector poised for explosive growth.
Industry after industry is under siege as companies embrace digital transformation (DX) to disrupt existing business models and disintermediate their competitor’s customer relationships. But what do we mean by “Digital Transformation”? The coupling of granular, real-time data (e.g., smartphones, connected devices, smart appliances, wearables, mobile commerce, video surveillance) with modern technologies (e.g., cloud native apps, big data architectures, hyper-converged technologies, artificial intelligence, blockchain) to enhance products, processes, and business-decision making with customer, product and operational insights.