Click here to close now.

Welcome!

Cloud Expo Authors: David Miller, JP Morgenthal, Baruch Sadogursky, James Carlini, Adrian Bridgwater

Related Topics: Big Data Journal, Java, Microservices Journal, Virtualization, Web 2.0, Cloud Expo, Apache

Big Data Journal: Article

Examining the True Cost of Big Data

As you start on your Big Data journey or project, be sure to ask what exactly the business requires

The good news about the Big Data market is that we generally all agree on the definition of Big Data, which has come to be known as data that has volume, velocity and variety where businesses need to collect, store, manage and analyze in order to derive business value or otherwise known as the "4 V's." However, the problem with such a broad definition is that it can mean different things to different people once you start to put some real values next to those V's.

Let's be honest, Volume can be a different thing to different organizations. To some it is anything above 10 terabytes of managed data in their BI environment and to others it is petabyte scale and nothing less. Likewise velocity can be multi-billions of daily records coming into the enterprise from various external and internal networks. When it really comes down to it, each business situation will be quite different not only from a size and speed perspective but also more important from the business use-case or requirement. A large bank's Big Data problem could be very different to that of an online retailer or an airline. If you compare what say a hospital is trying to do collecting and analyzing all the sensor patient data compared to a utilities provider running a smart-grid or a telecommunications operator. True, all could be categorized as machine generated or raw data but the exact type of data might be different not to mention the volume or growth rate. Probably the one unique common denominator across all aforementioned industries is that everyone is keeping the data for longer time-periods. No one is throwing it away - not even the detailed data.

The Many Cost Factors to Consider
Costs will of course vary depending on the individual allocated IT budget but regardless, how the company allocates IT budget dollars to new Big Data initiatives needs consideration. Let's face it, enterprise buyers didn't suddenly come into a bunch of newfound IT assets or line items on their budget and the current world economic situation would certainly not suggest so. More likely existing budgets are being re-allocated and instead of spending more on say existing traditional data warehouses or appliances, monies are being allocated to new projects running on open source projects including Apache Hadoop which promises both low cost, ease of scale not to mention the obvious best approach to managing and analyzing multi-structured data sets. The difficultly then arises how do you integrate or have your Hadoop environment co-exist with the established BI or DW environment that the business has grown to love and rely upon?

Leverage What You Already Have
Let's assume you have a data warehouse or data mart in place today and you already use various ETL or data movement tools and BI dashboard, analytics or reporting tools and you don't want to disrupt business users which could not only impacting performance levels but also training up on a new set of tools. In fact you already likely beholden to strict SLA's around response times for the various business reports and KPI's. However, at the same time the business is demanding access to new data sets in order to glean better insights either directly analyzing this data or co-mingling it with existing customer data. This could take the form of web-logs, click stream data or social media data from various interactive sites the business is now leveraging and tracking. The promise of impacting profit margins and gaining a competitive edge just cannot be avoided.

As we all know, traditional relational or columnar databases can't handle the unstructured data types so IT needs to rollout a different solution to satisfy the business demands. Evaluations can take many forms but typically will start with which Hadoop distribution, which NoSQL or NewSQL database and what query access tools in addition to MapReduce. It is certainly no easy task as there are a large number of technology solutions on the market today that claim to run on or with Hadoop providing MapReduce or SQL-like capabilities which all satisfy the requirement of managing volumes of unstructured data. Some are more mature than others; some proven and not all are low-cost. Open source on the surface looks very low cost but as soon as you require any level of support, which lets face it once it's live and relied upon as a business critical environment, you will need to allocate a line item on your budget. The Big Data line item won't just be one line as it will need to include all components required to properly rollout a Big Data solution to truly satisfy the business demands. Just like any other IT environment the obvious pieces will include: Software licensing and support, hardware, skilled dedicated resources, professional services and training and the dedicated time of business users to provide input on key requirements including specifying types of reports, queries and analysis which will naturally change and evolve over time.

Big Data Costs Can Quickly Creep Up
In terms of the hardware expenditure required to manage the new Big Data set, you may start out with a Hadoop cluster of say 10 nodes and yes that is certainly manageable but if your data velocity is significant, you can quickly reach 100+ nodes and now you will face a number of other expenses including additional headcount and skilled resources to manage the environment proactively in addition to tools for managing the cluster including system management and alerting and potentially add-on software which can vary by business use-case but might cover real-time analytics against streaming data for say fraud detection or detection of unusual patterns. You may also need a business tool to provide a front-end GUI dashboard to track specific KPIs or data visualization tools so business users can quickly understand what is going on. Very quickly the costs become less about the storage and hardware and more around the software that focuses on getting the most value from this newly collected data set.

There is no denying the fact that Big Data presents great new opportunities but reaching the point of a quantifiable ROI in a fast time frame is still a very real challenge. Everyone is talking about Big Data and all the innovative technology approaches to tackling it but it is still difficult to find lots of business success stories within any one-industry sector. It's still fairly immature but the good news is that its moving at a much faster pace than any other IT project today and certainly our data warehouse and BI forefathers have provided lessons learned over the past two decades.

Big Data Is Big Business but It Comes with Strict Requirements
If we want to examine more closely the main areas of expenditure for a Big Data project, it is probably best to look at it through the lens of a specific type of business and use-case. Let's take a large financial institution that has a number of existing traditional data warehouse / BI environments but because the business doesn't want to throw any data away (well let's face it regulations don't allow that for a number of years) and realistically the business wants to retain specific data sets for ongoing trending and analysis. This includes examining questions such as "what constitutes a low-risk client based on spending behavior patterns over a specific time period cross-referenced with customer demographics" which will help the institution better target a particular segment of the market.

Given the IT budget doesn't allow for increased spend that correlates with data growth rates, they need to seriously reduce costs and so decide to go the route of a Hadoop-based environment given its promise for low-cost scale and the fact that it can provide insights into customer patterns by capturing semi- and unstructured data. Front-ending the warehouse with a dedicated Hadoop cluster is the preferred architectural approach but the business users still want access to both the Hadoop environment and the existing traditional data warehouse environment.

Given we are talking about a financial institution, the question of security and availability quickly come to the top of the requirements list. At the same time, if business users want to access that data, SQL query access and using the current BI tool against that new set of data is also a requirement. If you can avoid having to the move large chunks of data on a frequent basis from one to the other, it will not only reduce costs but also latency. In an ideal world, being able to leverage the skill sets you already have and avoiding duplication of work is key.

Below is a quick table outlining the main cost factors to be considered and a set of comments against each of these areas that could reduce costs.

 

Big Data on Hadoop Cost Factors

Key Consideration to drive down cost

 

Storage

Look at databases that provide data compression to yield storage savings (better than GZip or LZO).

 

Hardware (Nodes)

Granular data compression at database level will reduce nodes over time.

 

Data Analytics - Skilled Resources

Examine technology solutions that provide standard SQL or BI tool access in addition to MapReduce (Pig etc.)

 

Cluster management - Skilled Resources

Leverage existing Dev-operations staff if you deploy a SQL-compliant data environment

 

Security

Look for database solutions that provide built-in security permissions and access.

 

Availability / DR

Consider a data management environment that doesn't require additional tools for replication.

 

Training

Consider solutions where you don't need to retrain or hire all new resources. Leverage what you have (standard SQL-skilled DBAs)

Summary: Consider All Factors and Get Business Buy-in Quickly
Big Data is fundamentally a business problem. If you begin with the question of "what is the business trying to achieve by collecting, storing and analyzing this new set of data...", you will start down the right path to realizing business gains. Whether you outsource the initiative or bring in external consultants and vendors to manage the project, the same questions will arise and in order to leverage what you already have which includes both existing IT environments and skills, you will be better able to contain costs.

Furthermore, we all love the promise of new innovative technologies including Hadoop and MapReduce but without leveraging tried and tested standards we have come to love and respect, it doesn't make a whole lot of sense from both a technical or economic sense. As you start on your Big Data journey or project, be sure to ask what exactly the business requires and how can you leverage what you already have today. We all know, getting business user buy-in and success is half the battle to a successful rollout.

More Stories By John Bantleman

John Bantleman, CEO of RainStor, has more than 20 years’ experience in the management of software companies. Prior to overseeing RainStor, he transformed LBMS into a $45 million business prior to its successful NASDAQ flotation in 1997. Today’s LBMS’ technology is now part of CA’s product portfolio. The following year John was instrumental in the launch of Evolve, and drove the company through to a successful IPO on NASDAQ.

Returning to the UK in 2003, John spent 12 months working on the advisory boards of venture capital organizations such as Apax Partners. He joined RainStor Inc. as Chairman in 2004 and became CEO at the start of 2007 and relocated back to the US to head-up worldwide operations in 2009.

Comments (3) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
Vikas.Deolaliker 09/21/12 06:49:00 PM EDT

Great article. Another data point, the IT budget is up only 4% in 2013 over 2012, so don't expect everyone to rush into Bigdata.

The fourth "V" is visualization. If you cannot render the analysis in a intuitive way, there is no value in that analysis. In fact, visualization should be the first step in design of a bigdata system - it helps trim down the architectural bloat into something that is within budget and useful.

Elad Israeli 09/19/12 06:07:00 PM EDT

Fascinating post. Still waiting for someone to crack the nut that is Big Data Analytics.

douglaney 08/29/12 03:36:00 PM EDT

Great piece John. Excellent detail. Thought you and your readers might be interested in where the "3Vs" of big data originated--in a Gartner piece I authored over 11 years ago. I recently unearthed a copy so folks to refer to and cite it.

Cheers,
Doug Laney, VP Research, Gartner, @doug_laney

@CloudExpo Stories
Gartner predicts that the bulk of new IT spending by 2016 will be for cloud platforms and applications and that nearly half of large enterprises will have cloud deployments by the end of 2017. The benefits of the cloud may be clear for applications that can tolerate brief periods of downtime, but for critical applications like SQL Server, Oracle and SAP, companies need a strategy for HA and DR protection. While traditional SAN-based clusters are not possible in these environments, SANless cluste...
Hardware will never be more valuable than on the day it hits your loading dock. Each day new servers are not deployed to production the business is losing money. While Moore's Law is typically cited to explain the exponential density growth of chips, a critical consequence of this is rapid depreciation of servers. The hardware for clustered systems (e.g., Hadoop, OpenStack) tends to be significant capital expenses. In his session at Big Data Expo, Mason Katz, CTO and co-founder of StackIQ, disc...
In a recent research, analyst firm IDC found that the average cost of a critical application failure is $500,000 to $1 million per hour and the average total cost of unplanned application downtime is $1.25 billion to $2.5 billion per year for Fortune 1000 companies. In addition to the findings on the cost of the downtime, the research also highlighted best practices for development, testing, application support, infrastructure, and operations teams.
In their general session at 16th Cloud Expo, Michael Piccininni, Global Account Manager – Cloud SP at EMC Corporation, and Mike Dietze, Regional Director at Windstream Hosted Solutions, will review next generation cloud services, including the Windstream-EMC Tier Storage solutions, and discuss how to increase efficiencies, improve service delivery and enhance corporate cloud solution development. Speaker Bios Michael Piccininni is Global Account Manager – Cloud SP at EMC Corporation. He has b...
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo, June 9-11, 2015, at the Javits Center in New York City. Learn what is going on, contribute to the discussions, and ensure that your enter...
SYS-CON Events announced today that DragonGlass, an enterprise search platform, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. After eleven years of designing and building custom applications, OpenCrowd has launched DragonGlass, a cloud-based platform that enables the development of search-based applications. These are a new breed of applications that utilize a search index as their backbone for data...
With worldwide spending on cloud services and infrastructure growing by 23% in 2015 to $118B, it is clear that cloud services are here to stay. Yet, the rate of cloud adoption varies by companies and markets around the world. With thousands of outages and hijacks across the Internet every day, one reason for hesitation is the faith in quality Internet performance. In his session at 16th Cloud Expo, Michael Kane, Senior Manager at Dyn, will explore how Internet performance affects your end-user...
Container frameworks, such as Docker, provide a variety of benefits, including density of deployment across infrastructure, convenience for application developers to push updates with low operational hand-holding, and a fairly well-defined deployment workflow that can be orchestrated. Container frameworks also enable a DevOps approach to application development by cleanly separating concerns between operations and development teams. But running multi-container, multi-server apps with containers ...
As the Internet of Things unfolds, mobile and wearable devices are blurring the line between physical and digital, integrating ever more closely with our interests, our routines, our daily lives. Contextual computing and smart, sensor-equipped spaces bring the potential to walk through a world that recognizes us and responds accordingly. We become continuous transmitters and receivers of data. In his session at @ThingsExpo, Andrew Bolwell, Director of Innovation for HP's Printing and Personal S...
There is no doubt that Big Data is here and getting bigger every day. Building a Big Data infrastructure today is no easy task. There are an enormous number of choices for database engines and technologies. To make things even more challenging, requirements are getting more sophisticated, and the standard paradigm of supporting historical analytics queries is often just one facet of what is needed. As Big Data growth continues, organizations are demanding real-time access to data, allowing immed...
The OpenStack cloud operating system includes Trove, a database abstraction layer. Rather than applications connecting directly to a specific type of database, they connect to Trove, which in turn connects to one or more specific databases. One target database is Postgres Plus Cloud Database, which includes its own RESTful API. Trove was originally developed around MySQL, whose interfaces are significantly less complicated than those of the Postgres cloud database. In his session at 16th Cloud...
SYS-CON Events announced today that EnterpriseDB (EDB), the leading worldwide provider of enterprise-class Postgres products and database compatibility solutions, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. EDB is the largest provider of Postgres software and services that provides enterprise-class performance and scalability and the open source freedom to divert budget from more costly traditiona...
Cloud computing started a technology revolution; now DevOps is driving that revolution forward. By enabling new approaches to service delivery, cloud and DevOps together are delivering even greater speed, agility, and efficiency. No wonder leading innovators are adopting DevOps and cloud together! In his session at DevOps Summit, Andi Mann, Vice President of Strategic Solutions at CA Technologies, explored the synergies in these two approaches, with practical tips, techniques, research data, wa...
Enterprises are fast realizing the importance of integrating SaaS/Cloud applications, API and on-premises data and processes, to unleash hidden value. This webinar explores how managers can use a Microservice-centric approach to aggressively tackle the unexpected new integration challenges posed by proliferation of cloud, mobile, social and big data projects. Industry analyst and SOA expert Jason Bloomberg will strip away the hype from microservices, and clearly identify their advantages and d...
Data-intensive companies that strive to gain insights from data using Big Data analytics tools can gain tremendous competitive advantage by deploying data-centric storage. Organizations generate large volumes of data, the vast majority of which is unstructured. As the volume and velocity of this unstructured data increases, the costs, risks and usability challenges associated with managing the unstructured data (regardless of file type, size or device) increases simultaneously, including end-to-...
If cloud computing benefits are so clear, why have so few enterprises migrated their mission-critical apps? The answer is often inertia and FUD. No one ever got fired for not moving to the cloud - not yet. In his session at 15th Cloud Expo, Michael Hoch, SVP, Cloud Advisory Service at Virtustream, discussed the six key steps to justify and execute your MCA cloud migration.
SYS-CON Events announced today that the "First Containers & Microservices Conference" will take place June 9-11, 2015, at the Javits Center in New York City. The “Second Containers & Microservices Conference” will take place November 3-5, 2015, at Santa Clara Convention Center, Santa Clara, CA. Containers and microservices have become topics of intense interest throughout the cloud developer and enterprise IT communities.
Buzzword alert: Microservices and IoT at a DevOps conference? What could possibly go wrong? In this Power Panel at DevOps Summit, moderated by Jason Bloomberg, the leading expert on architecting agility for the enterprise and president of Intellyx, panelists will peel away the buzz and discuss the important architectural principles behind implementing IoT solutions for the enterprise. As remote IoT devices and sensors become increasingly intelligent, they become part of our distributed cloud en...
“We are strong believers in the DevOps movement and our staff has been doing DevOps for large enterprise environments for a number of years. The solution that we build is intended to allow DevOps teams to do security at the speed of DevOps," explained Justin Lundy, Founder & CTO of Evident.io, in this SYS-CON.tv interview at DevOps Summit, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Docker is becoming very popular--we are seeing every major private and public cloud vendor racing to adopt it. It promises portability and interoperability, and is quickly becoming the currency of the Cloud. In his session at DevOps Summit, Bart Copeland, CEO of ActiveState, discussed why Docker is so important to the future of the cloud, but will also take a step back and show that Docker is actually only one piece of the puzzle. Copeland will outline the bigger picture of where Docker fits a...