Welcome!

@CloudExpo Authors: Elizabeth White, Yeshim Deniz, Zakia Bouachraoui, Liz McMillan, Pat Romanski

Related Topics: Microservices Expo, Containers Expo Blog, Cognitive Computing , @CloudExpo, Apache, Cloud Security

Microservices Expo: Blog Feed Post

Bare Metal Blog: Introduction to FPGAs

FPGAs change a lot. Here’s why they’re a big deal

We’re having all of our sidewalks redone right this instant. In fact, I’ll include a picture of the “pavers” – which is the fancy new word for the stones used to build the sidewalk. If the construction and design team do something wrong, it will cost them a pretty penny to come back out, rip up the pavers (and the columns or knee wall they’re putting in with the pavers on the patio), and move things around or replace pavers to make it right. We hired a great company that has done good work for us in the past, so I’m not terribly worried about this possibility. It happens in construction, but happens a lot less with a reputable installer.

image

It does offer a solid introduction to Field Programmable Gate Arrays (FPGAs) though. Because before there were FPGAs, most hardware out there shipped with a well-defined, non-changeable logic path. It did what it did, and if the hardware designers made a mistake in this increasingly complex product, you were stuck with the results. Some EEPROMs were shipped with re-programmability, but the vast majority of hardware did not have any way to update it. If a bug appeared, you lived with it or the vendor took the very expensive step of replacing it. Much like what happens when pavers are installed incorrectly. The difference of course is that you can look at pavers and see if you think the work is right, while hardware needs to be run – and run a lot – before weaknesses show. Kind of like the case where pavers are laid down but the material underneath them is not properly prepared. The next spring you can expect a jungle to grow up between the pavers, but until then they look nice.

EEPROMs (Electrically Erasable Programmable Read Only Memory) and then FPGAs brought the ability to fix bugs in the field into the realm of hardware. As FPGAs progressed and became more complex, even real-time updating (as in on-the-fly) became a possibility. At this point, there are billions of gates on an FPGA, and they’re used in a wide variety of devices. If you’ve ever “Flashed the ROM” or “Updated Firmware” there is a good chance you’ve been updating the FPGA in the device (though of course, these terms are vague enough that it could be other things you’re updating too).

But the power of updating on-the-fly is huge. If for nothing else than prototyping and training. Need to teach people hardware design? How better than on a device that you can program, test, reprogram, test again… Indeed, for at-home use (having nothing to do with F5, just one of my many geek toys), I use an Actel FPGA to set up complex circuits. Actel is now MicroSemi, but I haven’t dealt with them since the change, so I don’t know any details there. But for designing circuits, you can’t beat it. I’ve abused mine, and it still does what I tell it to. Note I said “what I tell it to”, not “what I expect it to”… I’m not a professional at FPGA programming, but it is a lot of fun.

But in a professional setting, the power is even greater. Not only can you train staff in FPGA programming and prototype solutions with FPGAs, you can also ship with FPGAs installed. Having FPGAs installed means that a huge percentage of the logic that makes a device go can be updated as-needed. This helps the vendor by giving them a path to fixing logic errors that were not discovered before ship time (say because the error is not obvious until the device is under massive load for a long period of time). It helps the customer by giving them an obsolescent-resistant product. If the logic of the hardware can be updated, then the device is much more forward-compatible than those that are not. When an FPGA can have 500,000 to millions of logic elements on it, the level of re-programmability becomes amazing. No support for the newest standard that impacts your device? Download the update, and BAM! You’ve got support for a standard that might not have even existed when your device was originally designed.

This does of course come with some risks. A part of your system that was stable forever now has changes introduced to it dynamically, but most reputable vendors have tools/steps/security in place to protect their customers from hardware problems bringing down the entire system. I can’t speak for everyone, in fact, at this instant I can’t even authoritatively speak for F5, but this next week I’ll be talking to the hardware folks about what we do, and the next two installments in this blog will cover both what we do with FPGAs, and how we protect our customers.

Read the original blog entry...

More Stories By Don MacVittie

Don MacVittie is founder of Ingrained Technology, A technical advocacy and software development consultancy. He has experience in application development, architecture, infrastructure, technical writing,DevOps, and IT management. MacVittie holds a B.S. in Computer Science from Northern Michigan University, and an M.S. in Computer Science from Nova Southeastern University.

CloudEXPO Stories
DXWorldEXPO LLC announced today that Kevin Jackson joined the faculty of CloudEXPO's "10-Year Anniversary Event" which will take place on November 11-13, 2018 in New York City. Kevin L. Jackson is a globally recognized cloud computing expert and Founder/Author of the award winning "Cloud Musings" blog. Mr. Jackson has also been recognized as a "Top 100 Cybersecurity Influencer and Brand" by Onalytica (2015), a Huffington Post "Top 100 Cloud Computing Experts on Twitter" (2013) and a "Top 50 Cloud Computing Blogger for IT Integrators" by CRN (2015). Mr. Jackson's professional career includes service in the US Navy Space Systems Command, Vice President J.P. Morgan Chase, Worldwide Sales Executive for IBM and NJVC Vice President, Cloud Services. He is currently part of a team responsible for onboarding mission applications to the US Intelligence Community cloud computing environment (IC ...
When applications are hosted on servers, they produce immense quantities of logging data. Quality engineers should verify that apps are producing log data that is existent, correct, consumable, and complete. Otherwise, apps in production are not easily monitored, have issues that are difficult to detect, and cannot be corrected quickly. Tom Chavez presents the four steps that quality engineers should include in every test plan for apps that produce log output or other machine data. Learn the steps so your team's apps not only function but also can be monitored and understood from their machine data when running in production.
The best way to leverage your Cloud Expo presence as a sponsor and exhibitor is to plan your news announcements around our events. The press covering Cloud Expo and @ThingsExpo will have access to these releases and will amplify your news announcements. More than two dozen Cloud companies either set deals at our shows or have announced their mergers and acquisitions at Cloud Expo. Product announcements during our show provide your company with the most reach through our targeted audiences.
When building large, cloud-based applications that operate at a high scale, it's important to maintain a high availability and resilience to failures. In order to do that, you must be tolerant of failures, even in light of failures in other areas of your application. "Fly two mistakes high" is an old adage in the radio control airplane hobby. It means, fly high enough so that if you make a mistake, you can continue flying with room to still make mistakes. In his session at 18th Cloud Expo, Lee Atchison, Principal Cloud Architect and Advocate at New Relic, discussed how this same philosophy can be applied to highly scaled applications, and can dramatically increase your resilience to failure.
With more than 30 Kubernetes solutions in the marketplace, it's tempting to think Kubernetes and the vendor ecosystem has solved the problem of operationalizing containers at scale or of automatically managing the elasticity of the underlying infrastructure that these solutions need to be truly scalable. Far from it. There are at least six major pain points that companies experience when they try to deploy and run Kubernetes in their complex environments. In this presentation, the speaker will detail these pain points and explain how cloud can address them.