Welcome!

@CloudExpo Authors: Elizabeth White, Liz McMillan, Pat Romanski, ManageEngine IT Matters, Chris Kocher

Related Topics: Apache, Java IoT, Open Source Cloud, IoT User Interface, @CloudExpo

Apache: Blog Feed Post

GridGain and Hadoop: Differences and Synergies

Now data can be analyzed and processed at any point of its lifecycle

GridGain is Java-based middleware for in-memory processing of big data in a distributed environment. It is based on high performance in-memory data platform that integrates fast In-Memory MapReduce implementation with In-Memory Data Grid technology delivering easy to use and easy to scale software. Using GridGain you can process terabytes of data, on 1000s of nodes in under a second.

GridGain typically resides between business, analytics, transactional or BI applications and long term data storage such as RDBMS, ERP or Hadoop HDFS, and provides in-memory data platform for high performance, low latency data storage and processing.

Both, GridGain and Hadoop, are designed for parallel processing of distributed data. However, both products serve very different goals and in most cases are very complementary to each other. Hadoop is mostly geared towards batch-oriented offline processing of historical and analytics payloads where latencies and transactions don’t really matter, while GridGain is meant for real-time in-memory processing of both transactional and non-transactional live data with very low latencies. To better understand where each product really fits, let us compare some main concepts of each product.

GridGain In-Memory Compute Grid vs Hadoop MapReduce
MapReduce
is a programming model developed by Google for processing large data sets of data stored on disks. Hadoop MapReduce is an implementation of such model. The model is based on the fact that data in a single file can be distributed across multiple nodes and hence the processing of those files has to be co-located on the same nodes to avoid moving data around. The processing is based on scanning files record by record in parallel on multiple nodes and then reducing the results in parallel on multiple nodes as well. Because of that, standard disk-based MapReduce is good for problem sets which require analyzing every single record in a file and does not fit for cases when direct access to a certain data record is required. Furthermore, due to offline batch orientation of Hadoop it is not suited for low-latency applications.

GridGain In-Memory Compute Grid (IMCG) on the other hand is geared towards in-memory computations and very low latencies. GridGain IMCG has its own implementation of MapReduce which is designed specifically for real-time in-memory processing use cases and is very different from Hadoop one. Its main goal is to split a task into multiple sub-tasks, load balance those sub-tasks among available cluster nodes, execute them in parallel, then aggregate the results from those sub-tasks and return them to user.



Splitting tasks into multiple sub-tasks and assigning them to nodes is the *mapping* step and aggregating of results is *reducing* step. However, there is no concept of mandatory data built in into this design and it can work in the absence of any data at all which makes it a good fit for both, stateless and state-full computations, like traditional HPC. In cases when data is present, GridGain IMCG will also automatically colocate computations with the nodes where the data is to avoid redundant data movement.

It is also worth mentioning, that unlike Hadoop, GridGain IMCG is very well suited for processing of computations which are very short-lived in nature, e.g. below 100 milliseconds and may not require any mapping or reducing.

Here is a simple Java coding example of GridGain IMCG which counts number of letters in a phrase by splitting it into multiple words, assigning each word to a sub-task for parallel remote execution in the map step, and then adding all lengths receives from remote jobs in reduce step.

    int letterCount = g.reduce(
        BALANCE,
        // Mapper
        new GridClosure<String, Integer>() {
            @Override public Integer apply(String s) {
                return s.length();
            }
        },
        Arrays.asList("GridGain Letter Count".split(" ")),
        // Reducer
        F.sumIntReducer()
    ));

GridGain In-Memory Data Grid vs Hadoop Distributed File System
Hadoop Distributed File System (HDFS) is designed for storing large amounts of data in files on disk. Just like any file system, the data is mostly stored in textual or binary formats. To find a single record inside an HDFS file requires a file scan. Also, being distributed in nature, to update a single record within a file in HDFS requires copying of a whole file (file in HDFS can only be appended). This makes HDFS well-suited for cases when data is appended at the end of a file, but not well suited for cases when data needs to be located and/or updated in the middle of a file. With indexing technologies, like HBase or Impala, data access becomes somewhat easier because keys can be indexed, but not being able to index into values (secondary indexes) only allow for primitive query execution.

GridGain In-Memory Data Grid (IMDG) on the other hand is an in-memory key-value data store. The roots of IMDGs came from distributed caching, however GridGain IMDG also adds transactions, data partitioning, and SQL querying to cached data. The main difference with HDFS (or Hadoop ecosystem overall) is the ability to transact and update any data directly in real time. This makes GridGain IMDG well suited for working on operational data sets, the data sets that are currently being updated and queried, while HDFS is suited for working on historical data which is constant and will never change.

Unlike a file system, GridGain IMDG works with user domain model by directly caching user application objects. Objects are accessed and updated by key which allows IMDG to work with volatile data which requires direct key-based access.



GridGain IMDG allows for indexing into keys and values (i.e. primary and secondary indices) and supports native SQL for data querying & processing. One of unique features of GridGain IMDG is support for distributed joins which allow to execute complex SQL queries on the data in-memory without limitations.

GridGain and Hadoop Working Together
To summarize:

Hadoop essentially is a Big Data warehouse which is good for batch processing of historic data that never changes, while GridGain, on the other hand, is an In-Memory Data Platform which works with your current operational data set in transactional fashion with very low latencies. Focusing on very different use cases make GridGain and Hadoop very complementary with each other.



Up-Stream Integration
The diagram above shows integration between GridGain and Hadoop. Here we have GridGain In-Memory Compute Grid and Data Grid working directly in real-time with user application by partitioning and caching data within data grid, and executing in-memory computations and SQL queries on it. Every so often, when data becomes historic, it is snapshotted into HDFS where it can be analyzed using Hadoop MapReduce and analytical tools from Hadoop eco-system.

Down-Stream Integration
Another possible way to integrate would be for cases when data is already stored in HDFS but needs to be loaded into IMDG for faster in-memory processing. For cases like that GridGain provides fast loading mechanisms from HDFS into GridGain IMDG where it can be further analyzed using GridGain in-memory Map Reduce and indexed SQL queries.

Conclusion
Integration between an in-memory data platform like GridGain and disk based data platform like Hadoop allows businesses to get valuable insights into the whole data set at once, including volatile operational data set cached in memory, as well as historic data set stored in Hadoop. This essentially eliminates any gaps in processing time caused by Extract-Transfer-Load (ETL) process of copying data from operational system of records, like standard databases, into historic data warehouses like Hadoop. Now data can be analyzed and processed at any point of its lifecycle, from the moment when it gets into the system up until it gets put away into a warehouse.

Read the original blog entry...

More Stories By Thomas Krafft

Over 15 years of experience in marketing and demand creation, with strategies driving over $500 million in revenue for a variety of companies in several high-growth and competitive markets, including consumer software and web services, ecommerce, demand creation through web and search, big data, and now healthcare.

@CloudExpo Stories
SYS-CON Events announced today that Roundee / LinearHub will exhibit at the WebRTC Summit at @ThingsExpo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. LinearHub provides Roundee Service, a smart platform for enterprise video conferencing with enhanced features such as automatic recording and transcription service. Slack users can integrate Roundee to their team via Slack’s App Directory, and '/roundee' command lets your video conference ...
Technology vendors and analysts are eager to paint a rosy picture of how wonderful IoT is and why your deployment will be great with the use of their products and services. While it is easy to showcase successful IoT solutions, identifying IoT systems that missed the mark or failed can often provide more in the way of key lessons learned. In his session at @ThingsExpo, Peter Vanderminden, Principal Industry Analyst for IoT & Digital Supply Chain to Flatiron Strategies, will focus on how IoT de...
SYS-CON Events announced today that China Unicom will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. China United Network Communications Group Co. Ltd ("China Unicom") was officially established in 2009 on the basis of the merger of former China Netcom and former China Unicom. China Unicom mainly operates a full range of telecommunications services including mobile broadband (GSM, WCDMA, LTE F...
DevOps at Cloud Expo, taking place Nov 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 19th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long dev...
Almost two-thirds of companies either have or soon will have IoT as the backbone of their business in 2016. However, IoT is far more complex than most firms expected. How can you not get trapped in the pitfalls? In his session at @ThingsExpo, Tony Shan, a renowned visionary and thought leader, will introduce a holistic method of IoTification, which is the process of IoTifying the existing technology and business models to adopt and leverage IoT. He will drill down to the components in this fra...
There is growing need for data-driven applications and the need for digital platforms to build these apps. In his session at 19th Cloud Expo, Muddu Sudhakar, VP and GM of Security & IoT at Splunk, will cover different PaaS solutions and Big Data platforms that are available to build applications. In addition, AI and machine learning are creating new requirements that developers need in the building of next-gen apps. The next-generation digital platforms have some of the past platform needs a...
Without a clear strategy for cost control and an architecture designed with cloud services in mind, costs and operational performance can quickly get out of control. To avoid multiple architectural redesigns requires extensive thought and planning. Boundary (now part of BMC) launched a new public-facing multi-tenant high resolution monitoring service on Amazon AWS two years ago, facing challenges and learning best practices in the early days of the new service. In his session at 19th Cloud Exp...
I'm a lonely sensor. I spend all day telling the world how I'm feeling, but none of the other sensors seem to care. I want to be connected. I want to build relationships with other sensors to be more useful for my human. I want my human to understand that when my friends next door are too hot for a while, I'll soon be flaming. And when all my friends go outside without me, I may be left behind. Don't just log my data; use the relationship graph. In his session at @ThingsExpo, Ryan Boyd, Engi...
Information technology is an industry that has always experienced change, and the dramatic change sweeping across the industry today could not be truthfully described as the first time we've seen such widespread change impacting customer investments. However, the rate of the change, and the potential outcomes from today's digital transformation has the distinct potential to separate the industry into two camps: Organizations that see the change coming, embrace it, and successful leverage it; and...
SYS-CON Events announced today that Numerex Corp, a leading provider of managed enterprise solutions enabling the Internet of Things (IoT), will exhibit at the 19th International Cloud Expo | @ThingsExpo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Numerex Corp. (NASDAQ:NMRX) is a leading provider of managed enterprise solutions enabling the Internet of Things (IoT). The Company's solutions produce new revenue streams or create operating...
While DevOps promises a better and tighter integration among an organization’s development and operation teams and transforms an application life cycle into a continual deployment, Chef and Azure together provides a speedy, cost-effective and highly scalable vehicle for realizing the business values of this transformation. In his session at @DevOpsSummit at 19th Cloud Expo, Yung Chou, a Technology Evangelist at Microsoft, will present a unique opportunity to witness how Chef and Azure work tog...
Data is an unusual currency; it is not restricted by the same transactional limitations as money or people. In fact, the more that you leverage your data across multiple business use cases, the more valuable it becomes to the organization. And the same can be said about the organization’s analytics. In his session at 19th Cloud Expo, Bill Schmarzo, CTO for the Big Data Practice at EMC, will introduce a methodology for capturing, enriching and sharing data (and analytics) across the organizati...
SYS-CON Events announced today that Secure Channels will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. The bedrock of Secure Channels Technology is a uniquely modified and enhanced process based on superencipherment. Superencipherment is the process of encrypting an already encrypted message one or more times, either using the same or a different algorithm.
The vision of a connected smart home is becoming reality with the application of integrated wireless technologies in devices and appliances. The use of standardized and TCP/IP networked wireless technologies in line-powered and battery operated sensors and controls has led to the adoption of radios in the 2.4GHz band, including Wi-Fi, BT/BLE and 802.15.4 applied ZigBee and Thread. This is driving the need for robust wireless coexistence for multiple radios to ensure throughput performance and th...
The Internet of Things can drive efficiency for airlines and airports. In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect with GE, and Sudip Majumder, senior director of development at Oracle, will discuss the technical details of the connected airline baggage and related social media solutions. These IoT applications will enhance travelers' journey experience and drive efficiency for the airlines and the airports. The session will include a working demo and a technical d...
SYS-CON Events announced today the Enterprise IoT Bootcamp, being held November 1-2, 2016, in conjunction with 19th Cloud Expo | @ThingsExpo at the Santa Clara Convention Center in Santa Clara, CA. Combined with real-world scenarios and use cases, the Enterprise IoT Bootcamp is not just based on presentations but with hands-on demos and detailed walkthroughs. We will introduce you to a variety of real world use cases prototyped using Arduino, Raspberry Pi, BeagleBone, Spark, and Intel Edison. Y...
Fact is, enterprises have significant legacy voice infrastructure that’s costly to replace with pure IP solutions. How can we bring this analog infrastructure into our shiny new cloud applications? There are proven methods to bind both legacy voice applications and traditional PSTN audio into cloud-based applications and services at a carrier scale. Some of the most successful implementations leverage WebRTC, WebSockets, SIP and other open source technologies. In his session at @ThingsExpo, Da...
If you’re responsible for an application that depends on the data or functionality of various IoT endpoints – either sensors or devices – your brand reputation depends on the security, reliability, and compliance of its many integrated parts. If your application fails to deliver the expected business results, your customers and partners won't care if that failure stems from the code you developed or from a component that you integrated. What can you do to ensure that the endpoints work as expect...
Traditional on-premises data centers have long been the domain of modern data platforms like Apache Hadoop, meaning companies who build their business on public cloud were challenged to run Big Data processing and analytics at scale. But recent advancements in Hadoop performance, security, and most importantly cloud-native integrations, are giving organizations the ability to truly gain value from all their data. In his session at 19th Cloud Expo, David Tishgart, Director of Product Marketing ...
Enterprise IT has been in the era of Hybrid Cloud for some time now. But it seems most conversations about Hybrid are focused on integrating AWS, Microsoft Azure, or Google ECM into existing on-premises systems. Where is all the Private Cloud? What do technology providers need to do to make their offerings more compelling? How should enterprise IT executives and buyers define their focus, needs, and roadmap, and communicate that clearly to the providers?