Click here to close now.

Welcome!

Cloud Expo Authors: Liz McMillan, Elizabeth White, Mike Kavis, Pat Romanski, Dana Gardner

Related Topics: MICROSERVICES, Java, XML, .NET, AJAX & REA, Apache

MICROSERVICES: Article

Intelligent Complex Event Processing with Artificial Neural Network

Solve highly complex problems in real or near real time

In the current world, data is continuously being generated across various layers of organizations and environment due to changes in the system states or due to the occurrence of new events. These changes in the state of the existing system can happen due to the arrival of a new order request, customer service calls for complaints or feedback, changes in the company stock prices, text or multimedia messages, emails, social media posts, traffic reports, weather reports or any other kind of data. Simply producing reports using these data on a pre-defined schedule is not enough. Decision makers need real-time alerts and intelligent insight of all that is happening within and around the organization so that they may take meaningful reactive and proactive action before it is too late based on the new information being continuously generated.

A powerful technique called Complex Event Processing (CEP) is used for analyzing events coming from multiple sources over a specific period of time by detecting complex patterns between events and by making correlations. Apart from CEP, Artificial Neural Network (ANN) is also used to model complex relationships between input events data. Both the approaches have their own pros and cons. In this article, we tried to describe a use case in the health care domain with the solution architecture using both CEP and ANN, combining the best capabilities of both the approaches. We have shown how one can use both the techniques together to solve highly complex problems in real or near real time.

The following two sections gives brief introduction about CEP and ANN respectively with their key benefits. In section 4, we have explained the approach which combines both the CEP and the ANN efficiently to provide better solution of complex problems. Section 5 and 6 explains the Health Care: Patient Monitoring System use case with the problem description and proposed solution approach using CEP and ANN, followed by the section with summary and conclusion.

Complex Event Processing
Complex event processing is one of the key Operational Intelligence technology used to process one or more stream of data and information (also known as events) and deriving a meaningful conclusion using them. It allows one to set the request for an analysis or some query and then have it continuously executed and evaluated over time against one or many streams of events in a highly efficient manner. CEP is all about processing events that combines data from many sources to infer events or patterns that suggest more complicated circumstances [1].  For example, CEP can be used as Fraud Detection system, to detect suspicious credit card usage by monitoring credit card activity in real time and relating the current transactions with the historical data about a particular customer. The historical data which can be used by CEP Fraud Detection system can be an average transaction amount, minimum and maximum values of the previous transactions, transaction frequencies, locality etc. On detecting fraudulent activity, CEP system can send an alert via an SMS or email to the customer or the credit card service provider to take quick reaction.

The primary goal of CEP is to (1) detect meaningful events or pattern of events which signifies either threats or opportunities from the series of events being received continuously and (2) send alerts for the same to responsible entity to respond as quickly as possible. The following diagram (as figure-1) describes high level view of the CEP system.

Figure 1: High-level view of the CEP system

As shown in Figure 1, the core of the complex event processing system is made up of set of input adapters, set of output adapters and various event processing modules such as event filtering modules, in-memory caching, aggregation over different windows (time-window, sliding window, tumbling window etc.), database lookups module, database writes module, correlation, joins, event pattern matching, state machines, dynamic queries etc. More the number of I/O adapters supported by the CEP, more flexible and adaptable it is and will be able to cover wide range of use cases as compared to the CEP tool having support for limited set of I/O adapters.

Key Benefits of CEP
The following are some of the key benefits the CEP provides to the business.

  • Automatically identifies rare but important relationships between seemingly unrelated events or stream of events and accelerate timely responses to both the threats and opportunities.
  • Using sophisticated analysis and event pattern matching techniques, the CEP improves resource allocation and timely problem resolution by prioritize situations that require the most urgent attention in real or near real time based on arrival of events.
  • CEP helps organization to reduce operating costs by monitoring end-to-end performance of the system and provide timely alerts to rapidly identify potential SLA violations.
  • CEP helps organization to fine tune their business processes by correlating SLA performance with industry metrics e.g. Six Sigma and various Quality metrics, to enhance overall productivity.

Artificial Neural Network
An Artificial Neural Network (ANN) is a computational model which resembles with the way human brain is made up of in structure and the way it works. Similar to human brain which is made up of billions of neurons interconnected by synapses, the ANN can be form as a network of computational nodes connected with each other through links. The ANN needs to be trained repeatedly with specific set of training data before it can be used in production environment. Due to its adaptive nature, the internal structure of the ANN can easily be changed based on external or internal information that flows through the network during the learning phase [2]. The links are assigned weights during training process, which regulate the flow of data from one node to another. ANNs are used to model complex relationships between inputs and outputs data. ANN can efficiently find various patterns in input data or to predict future values of the system parameters. Due to its flexible construct, ANN can be very helpful in modeling complex systems which are very difficult otherwise by using traditional modeling techniques. Artificial neural networks are being applied in diverse of domains and fields. They are extensively used for doing image processing and recognition, speech recognition, credit card fraud detection, for prediction of protein structure in biotechnology and in the field of genetic science.

Artificial neural network consists of two types of interfaces with the external world, the input and the output. Since the ANN is made up of nodes or neurons and the links between them, a subset of total nodes in the ANN act as input nodes, which take data from the external world, a subset of nodes act as output node, which produces result and zero or more hidden nodes act as intermediary nodes, with having only connections with input or output nodes or other hidden nodes.  Hence, the ANN is made up of nodes in input layer, nodes in output layer and zero or more internal layers.

Figure 2: High-level view of artificial neural network

The high level view of ANN is shown in figure-2. The diagram shows a typical neural network with total 12 nodes, three nodes in the input layer, seven nodes in the hidden layer and two nodes in the output layer. Before the neural network can be used in actual production environment, it is needed to be trained for particular environment. The process of training of ANN is called learning of neural network, which is generally done in one of the following three ways:  (a) supervised learning; (b) unsupervised learning and (c) reinforcement learning. The more details about the ANN learning can be found in [2].

Key Benefits of ANN
Since ANNs can infer a function from inputs, they particularly are used in the applications where the complexity of the input data or system modeling makes the design of such a function impractical using traditional approaches. Following are some of the key benefits ANN provides.

  • It is very easy to apply ANN to problem domains where the relationships are quite dynamic or non-linear among the input and output.
  • Since ANN is capable of capturing many kind of relationships and complex patterns among data, ANN allows user to easily model the system which otherwise is very difficult or impossible to represent through traditional modeling approaches.
  • The training information is not stored in any single element but is distributed in the entire network structure. This makes ANN fault tolerant and it reduces the impact of erroneous input on the result.

CEP and ANN Together
Having seen the key properties and benefits of using both, CEP and ANN, this section describes what if one apply both together for specific set of problems to make the modeling of the system and solution easy and efficient. The CEP is best in accepting data or events from multiple channels and apply various event processing operations on it, such as event filtering, event pattern matching, aggregation etc. Apart from that user can configure alerts based on various thresholds on various system parameters. But the CEP tools lakes the ability to predict future events or determine the values of the system parameters for future events, which can be efficiently done by the ANN. So if we combine best of CEP and best of ANN for a particular problem, the resulting solution could be very effective and efficient. In the following sections, we have described how the CEP and the ANN can be used together to solve a particular problem of patient monitoring system in the domain of Health care and medicines.

Patient Monitoring System
The patient monitoring system monitors and keeps track of various body parameters of the patient and provides the data for analysis to monitoring system. Various body parameters could be blood pressure, the percentage of oxygen in the blood, glucose level in the blood, heart beat rate, change in body temperature etc. Data provided by the patient monitoring system helps to make diagnostic decisions easy and more reliable. The quality of patient treatment and care giving can greatly be improved with the use of patient monitoring systems, since it allows generating alerts in case of sudden changes in the patient body parameters which could be dangerous to the patient's health or could be life threatening some time [3].

A Use Case
Goals of the patient monitoring system are to (1) continuously keeps track of the patient's body parameters and store the data for present or future references, (2) identify life-threatening changes in patient's body and raises timely alarms for the same, and (3) to determine whether patient's health is in normal condition or it is improving or worsening based on the continuously arriving input data from various medical monitors. Since no two human bodies react in a same way against given situation or medication, it is very difficult to derived common rule set which can be applied to all human bodies. Similarly, one person's body also reacts differently in different medical and environmental situations. For example, a particular heart beat rate can be normal in some situation, while the same can be very abnormal in the other situation. So to judge the proper health condition, a trained professional is required, i.e. a specialist doctor, who studies all the observations and determine the correct state of patient's health. If the patient monitoring system is equipped with some intelligent agent who will use patient's medical history and current body parameters observations, then quality of patient care delivery can greatly be improved. We combine CEP and ANN together to propose system architecture which tries to act as an intelligent agent of the patient monitoring system, which is described in the following section.

System Architecture of the intelligent patient monitoring system using CEP and ANN
The following diagram, in Figure 3, shows the architecture of the intelligent patient monitoring system using CEP and ANN. There are total five key components; (1) Medical monitors, (2) CEP, (3) Patient's medical history and diagnosis data store, (4) ANN and (5) ANN output to action message converter.

(1) Medical Monitors
Medical monitors are medical devices used for monitoring patient's body parameters. It can consist of one or more body parameter sensors, processing components, display devices as well as communication links for displaying, recording or transmitting data or results elsewhere through a monitoring network. In the proposed architecture, the data generated by medical monitors are fed into the CEP system. [3]

Figure 3: Architecture of the intelligent patient monitoring system using CEP and ANN

The CEP section of the proposed architecture is one of the key components of the system. It receives all the monitored data and applies various event processing techniques, such as filtering, aggregation etc. over input event streams and provides the data for further processing to ANN module. Various input adapters available in CEP make it possible to collect data from different types of sensors or monitors and process them collectively. In CEP module, various event processing rule are written specific to the patient.

(3) Patient's medical history and diagnosis data store
This is the data store where patient's medical history and diagnosis data is stored. It could be traditional RDBMS storage system. The data stored in this storage are used for ANN training purpose. The new data is continuously added into the same data storage and will be used next time when ANN will be trained again with patient's latest medical and diagnosis data.

(4) ANN
The ANN model for the patient is computational neural network specific to the patient and trained using patient's all medical and diagnosis data. This trained ANN model is used for real-time diagnosis and care delivery. The decision is taken based on the input data coming from the CEP output adapters. The patient specific ANN model is trained at regular interval may be daily or on need bases. These regular updates which include latest knowledge about measured body parameters, diagnosis and medication information of the patient, helps ANN model to make accurate predictions. It is also possible to make ANN take biased decision by giving more weight to either historical data or the latest data during training. All these make ANN the most critical component of the system.

(5) ANN output to action message converter
The output generated by the ANN is generally real numbers and they are needed to be mapped to the meaningful information so that appropriate action can be taken. This is done by the ANN output to action message converter. The module not only map ANN output to real world information but it can also sends action data or alerts to devices or human being through email, SMS, alarm system etc. The threshold for various alerts can be configured so it can adapt to the changes happening to the health and body.

Together all these components make a very flexible, intelligent and efficient patient monitoring system. The proposed architecture shows how one can use CEP and ANN together more effectively to model the complex problem and provide efficient solution alternative over the traditional approaches.

Conclusion
Complex event processing and artificial neural network are the two widely used solution techniques for the problems that are very difficult to model using traditional approaches. In this article, we have described both the approaches in brief with their key capabilities. We have also described a use case for intelligent patient monitoring system with the solution architecture using both CEP and ANN and combining the best capabilities of both the approaches. We have shown how one can use both the techniques together to solve highly complex problems in real or near real time.

References

  1. Complex event processing, http://en.wikipedia.org/wiki/Complex_event_processing#cite_note-1
  2. Artificial neural network, http://en.wikipedia.org/wiki/Artificial_neural_network
  3. Patient Monitoring Systems - Part 1, http://www.philblock.info/hitkb/p/patient_monitoring_systems.html

More Stories By Kamalkumar Mistry

Kamalkumar Mistry is a Technology Analyst at Infosys Limited, Pune, India. At Infosys, he is part of a research group called Infosys Labs (http://www.infosys.com/infosys-labs).

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@CloudExpo Stories
SYS-CON Events announced today that robomq.io will exhibit at SYS-CON's @ThingsExpo, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. robomq.io is an interoperable and composable platform that connects any device to any application. It helps systems integrators and the solution providers build new and innovative products and service for industries requiring monitoring or intelligence from devices and sensors.
The 17th International Cloud Expo has announced that its Call for Papers is open. 17th International Cloud Expo, to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, APM, APIs, Microservices, Security, Big Data, Internet of Things, DevOps and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding bu...
Today, IT is not just a cost center. IT is an enabler and driver of business. With the emergence of the hybrid cloud paradigm, IT now has increasingly more capabilities to create new strategic opportunities for a business. Hybrid cloud allows an organization to utilize multi-tenant public clouds, dedicated private clouds, bare metal hosting, and the associated support and services for the right use cases through an on-demand, XaaS model. This model of IT creates tremendous opportunities for busi...
Business as usual for IT is evolving into a “Make or Buy” decision on a service-by-service conversation with input from the LOBs. How does your organization move forward with cloud? In his general session at 16th Cloud Expo, Paul Maravei, Regional Sales Manager, Hybrid Cloud and Managed Services at Cisco, discusses how Cisco and its partners offer a market-leading portfolio and ecosystem of cloud infrastructure and application services that allow you to uniquely and securely combine cloud busi...
Businesses are looking to empower employees and departments to do more, go faster, and streamline their processes. For all workers – but mobile workers especially – utilizing the cloud to reconnect documents and improve processes without destructing existing workflows can have a dramatic impact on productivity. In his session at 16th Cloud Expo, Mark Grilli, vice president of Acrobat Solutions marketing at Adobe Systems Incorporated, will outline new ways that the cloud is changing the way peo...
SYS-CON Events announced today that Litmus Automation will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Litmus Automation’s vision is to provide a solution for companies that are in a rush to embrace the disruptive Internet of Things technology and leverage it for real business challenges. Litmus Automation simplifies the complexity of connected devices applications with Loop, a secure and scalable clou...
As Marc Andreessen says software is eating the world. Everything is rapidly moving toward being software-defined – from our phones and cars through our washing machines to the datacenter. However, there are larger challenges when implementing software defined on a larger scale - when building software defined infrastructure. In his session at 16th Cloud Expo, Boyan Ivanov, CEO of StorPool, will provide some practical insights on what, how and why when implementing "software-defined" in the dat...
With the arrival of the Big Data revolution, a data professional is expected to master a broad spectrum of complex domains including data processing, mathematics, programming languages, machine learning techniques, and business knowledge. While this mastery is undoubtedly important, this narrow focus on tool usage has divorced many from the imagination required to solve real-world problems. As the demand for analysis increases, the data science community must transform from tool experts to "data...
SYS-CON Events announced today that Solgenia will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY, and the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Solgenia is the global market leader in Cloud Collaboration and Cloud Infrastructure software solutions. Designed to “Bridge the Gap” between Personal and Professional S...
WSM International has launched a DevOps services division that offers assessment, consulting and implementation to large enterprises and organizations with complex infrastructures. The concept of DevOps is to blend information technology (IT) software development with operations to optimize the computing infrastructure according to the specific needs of the organization. According to a recent press release from Gartner, "By 2016, DevOps will evolve from a niche strategy employed by large cloud ...
SYS-CON Events announced today that QTS Realty Trust, one of the nation’s largest and fastest-growing providers of data center facilities and cloud services and a leader in security and compliance, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. QTS Realty Trust, Inc. (NYSE: QTS) is a leading national provider of data center solutions and fully managed services, and a leader in security and compliance...
SYS-CON Events announced today that WSM International (WSM), the world’s leading cloud and server migration services provider, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. WSM is a solutions integrator with a core focus on cloud and server migration, transformation and DevOps services.
SYS-CON Events announced today that MangoApps will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY., and the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. MangoApps provides private all-in-one social intranets allowing workers to securely collaborate from anywhere in the world and from any device. Social, mobile, and eas...
SYS-CON Events announced today that Emcien will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Emcien’s vision is to let anyone use data to know the future. Emcien has built an automated, predictive analysis product that improves the lives of real people. Emcien allows people to automate their data analysis so they can build a better future.
The speed of software changes in growing and large scale rapid-paced DevOps environments presents a challenge for continuous testing. Many organizations struggle to get this right. Practices that work for small scale continuous testing may not be sufficient as the requirements grow. In his session at DevOps Summit, Marc Hornbeek, Sr. Solutions Architect of DevOps continuous test solutions at Spirent Communications, will explain the best practices of continuous testing at high scale, which is r...
Internet of Things (IoT) will be a hybrid ecosystem of diverse devices and sensors collaborating with operational and enterprise systems to create the next big application. In their session at @ThingsExpo, Bramh Gupta, founder and CEO of robomq.io, and Fred Yatzeck, principal architect leading product development at robomq.io, will discuss how choosing the right middleware and integration strategy from the get-go will enable IoT solution developers to adapt and grow with the industry, while at...
One of the hottest areas in cloud right now is DRaaS and related offerings. In his session at 16th Cloud Expo, Dale Levesque, Disaster Recovery Product Manager with Windstream's Cloud and Data Center Marketing team, will discuss the benefits of the cloud model, which far outweigh the traditional approach, and how enterprises need to ensure that their needs are properly being met.
SYS-CON Events announced today that the DevOps Institute has been named “Association Sponsor” of SYS-CON's DevOps Summit, which will take place on June 9–11, 2015, at the Javits Center in New York City, NY. The DevOps Institute provides enterprise level training and certification. Working with thought leaders from the DevOps community, the IT Service Management field and the IT training market, the DevOps Institute is setting the standard in quality for DevOps education and training.
Even though it’s now Microservices Journal, long-time fans of SOA World Magazine can take comfort in the fact that the URL – soa.sys-con.com – remains unchanged. And that’s no mistake, as microservices are really nothing more than a new and improved take on the Service-Oriented Architecture (SOA) best practices we struggled to hammer out over the last decade. Skeptics, however, might say that this change is nothing more than an exercise in buzzword-hopping. SOA is passé, and now that people are ...
Hosted PaaS providers have given independent developers and startups huge advantages in efficiency and reduced time-to-market over their more process-bound counterparts in enterprises. Software frameworks are now available that allow enterprise IT departments to provide these same advantages for developers in their own organization. In his workshop session at DevOps Summit, Troy Topnik, ActiveState’s Technical Product Manager, will show how on-prem or cloud-hosted Private PaaS can enable organ...