Click here to close now.




















Welcome!

@CloudExpo Authors: Don MacVittie, Pat Romanski, Liz McMillan, Elizabeth White, AppDynamics Blog

Related Topics: @CloudExpo, Java IoT, Microservices Expo, Open Source Cloud, Agile Computing, Apache

@CloudExpo: Article

The Cure for the Common Cloud-Based Big Data Initiative

Understanding how to work with Big Data

There is no doubt that Big Data holds infinite promise for a range of industries. Better visibility into data across various sources enables everything from insight into saving electricity to agricultural yield to placement of ads on Google. But when it comes to deriving value from data, no industry has been doing it as long or with as much rigor as clinical researchers.

Unlike other markets that are delving into Big Data for the first time and don't know where to begin, drug and device developers have spent years refining complex processes for asking very specific questions with clear purposes and goals. Whether using data for designing an effective and safe treatment for cholesterol, or collecting and mining data to understand proper dosage of cancer drugs, life sciences has had to dot every "i" and cross every "t" in order to keep people safe and for new therapies to pass muster with the FDA. Other industries are now marveling at a new ability to uncover information about efficiencies and cost savings, but - with less than rigorous processes in place - they are often shooting in the dark or only scratching the surface of what Big Data offers.

Drug developers today are standing on the shoulders of those who created, tested and secured FDA approval for treatments involving millions of data points (for one drug alone!) without the luxury of the cloud or sophisticated analytics systems. These systems have the potential to make the best data-driven industry even better. This article will outline key lessons and real-world examples of what other industries can and should learn from life sciences when it comes to understanding how to work with Big Data.

What Questions to Ask, What Data to Collect
In order to gain valuable insights from Big Data, there are two absolute requirements that must be met - understanding both what questions to ask and what data to collect. These two components are symbiotic, and understanding both fully is difficult, requiring both domain expertise and practical experience.

In order to know what data to collect, you first must know the types of questions that you're going to want to ask - often an enigma. With the appropriate planning and experience-based guesses, you can often make educated assumptions. The trick to collecting data is that you need to collect enough to answer questions, but if you collect too much then you may not be able to distill the specific subset that will answer your questions. Also, explicit or inherent cost can prevent you from collecting all possible data, in which case you need to carefully select which areas to collect data about.

Let's take a look at how this is done in clinical trials. Say you're designing a clinical study that will analyze cancer data. You may not have specific questions when the study is being designed, but it's reasonable to assume that you'll want to collect data related to commonly impacted readings for the type of cancer and whatever body system is affected, so that you have the right information to analyze when it comes time.

You may also want to collect data unrelated to the specific disease that subsequent questions will likely require, such as information on demographics and medications that the patient is taking that are different from the treatment. During the post-study data analysis, questions on these areas often arise, even though the questions aren't initially apparent. Thus clinical researchers have adopted common processes for collecting data on demographics and concomitant medications. Through planning and experience, you can also identify areas that do not need to be collected for each study. For example, if you're studying lung cancer, collecting cognitive function data is probably unrelated.

How can other industries anticipate what questions to ask, as is done in life sciences? Well, determine a predefined set of questions that are directly related to the goal of the data analysis. Since you will not know all of the questions until after the data collection have started, it's important to 1) know the domain, and 2) collect any data you'll need to answer the likely questions that could come up.

Also, clinical researchers have learned that questions can be discovered automatically. There are data mining techniques that can uncover statistically significant connections, which in effect are raising questions that can be explored in more detail afterwards. An analysis can be planned before data is collected, but not actually be run until afterwards (or potentially during), if the appropriate data is collected.

One other area that has proven to be extremely important to collect is metadata, or data about the data - such as, when it was collected, where it was collected, what instrumentation was used in the process and what calibration information was available. All of this information can be utilized later on to answer a lot of potentially important questions. Maybe there was a specific instrument that was incorrectly configured and all the resulting data that it recorded is invalid. If you're running an ad network, maybe there's a specific web site where your ads are run that are gaming the system trying to get you to pay more. If you're running a minor league team, maybe there's a specific referee that's biased, which you can address for subsequent games. Or, if you're plotting oil reserves in the Gulf of Mexico, maybe there are certain exploratory vessels that are taking advantage of you. In all of these cases, without the appropriate metadata, it'd be impossible to know where real problems reside.

Identifying Touch Points to Be Reviewed Along the Way
There are ways to specify which types of analysis can be performed, even while data is being collected, that can affect either how data will continue to be collected or the outcome as a whole.

For example, some clinical studies run what's called interim analysis while the study is in progress. These interim analyses are planned, and the various courses that can be used afterwards are well defined, but the results afterward are statistically usable. This is called an adaptive clinical trial, and there are a lot of studies that are being performed to determine more effective and useful ways that these can be done in the future. The most important aspect of these is preventing biases, and this is something that has been well understood and tested by the pharmaceutical community over the past several decades. Simply understanding what's happening during the course of a trial, or how it affects the desired outcome, can actually bias the results.

The other key factor is that the touch points are accessible to everybody who needs the data. For example, if you have a person in the field, then it's important to have him or her access the data in a format that's easily consumable to them - maybe through an iPad or an existing intranet portal. Similarly, if you have an executive that needs to understand something at a high level, then getting it to them in an easily consumable executive dashboard is extremely important.

As the life sciences industry has learned, if the distribution channels of the analytics aren't seamless and frictionless, then they won't be utilized to their fullest extent. This is where cloud-based analytics become exceptionally powerful - the cloud makes it much easier to integrate analytics into every user's day. Once each user gets the exact information they need, effortlessly, they can then do their job better and the entire organization will work better - regardless of how and why the tools are being used.

Augmenting Human Intuition
Think about the different types of tools that people use on a daily basis. People use wrenches to help turn screws, cars to get to places faster and word processers to write. Sure, we can use our hands or walk, but we're much more efficient and better when we can use tools.

Cloud-based analytics is a tool that enables everybody in an organization to perform more efficiently and effectively. The first example of this type of augmentation in the life sciences industry is alerting. A user tells the computer what they want to see, and then the computer alerts them via email or text message when the situation arises. Users can set rules for the data it wants to see, and then the tools keep on the lookout to notify the user when the data they are looking for becomes available.

Another area the pharmaceutical industry has thoroughly explored is data-driven collaboration techniques. In the clinical trial process, there are many different groups of users: those who are physically collecting the data (investigators), others who are reviewing it to make sure that it's clean (data managers), and also people who are stuck in the middle (clinical monitors). Of course there are many other types of users, but this is just a subset to illustrate the point. These different groups of users all serve a particular purpose relating to the overall collection of data and success of the study. When the data looks problematic or unclean, the data managers will flag it for review, which the clinical monitors can act on.

What's unique about the way that life sciences deals with this is that they've set up complex systems and rules to make sure that the whole system runs well. The tools associated around these processes help augment human intuition through alerting, automated dissemination and automatic feedback. The questions aren't necessarily known at the beginning of a trial, but as the data is collected, new questions evolve and the tools and processes in place are built to handle the changing landscape.

No matter what the purpose of Big Data analytics, any organization can benefit from the mindset of cloud-based analytics as a tool that needs to consistently be adjusted and refined to meet the needs of users.

Ongoing Challenges of Big Data Analytics
Given this history with data, one would expect that drug and device developers would be light years ahead when it comes to leveraging Big Data technologies - especially given that the collection and analytics of clinical data is often a matter of life and death. But while they have much more experience with data, the truth is that life sciences organizations are just now starting to integrate analytics technologies that will enable them to work with that data in new, more efficient ways - no longer involving billions of dollars a year, countless statisticians, archaic methods, and, if we're being honest, brute force. As new technology becomes available, the industry will continue to become more and more seamless. In the meantime, other industries looking to wrap their heads around the Big Data challenge should look to life sciences as the starting point for best practices in understanding how and when to ask the right questions, monitoring data along the way and selecting tools that improve the user experience.

More Stories By Rick Morrison

Rick Morrison is CEO and co-founder of Comprehend Systems. Prior to Comprehend Systems, he was the Chief Technology Officer of an Internet-based data aggregator, where he was responsible for product development and operations. Prior to that, he was at Integrated Clinical Systems, where he led the design and implementation of several major new features. He also proposed and led a major infrastructure redesign, and introduced new, streamlined development processes. Rick holds a BS in Computer Science from Carnegie Mellon University in Pittsburgh, Pennsylvania.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@CloudExpo Stories
Growth hacking is common for startups to make unheard-of progress in building their business. Career Hacks can help Geek Girls and those who support them (yes, that's you too, Dad!) to excel in this typically male-dominated world. Get ready to learn the facts: Is there a bias against women in the tech / developer communities? Why are women 50% of the workforce, but hold only 24% of the STEM or IT positions? Some beginnings of what to do about it! In her Opening Keynote at 16th Cloud Expo, S...
The speed of software changes in growing and large scale rapid-paced DevOps environments presents a challenge for continuous testing. Many organizations struggle to get this right. Practices that work for small scale continuous testing may not be sufficient as the requirements grow. In his session at DevOps Summit, Marc Hornbeek, Sr. Solutions Architect of DevOps continuous test solutions at Spirent Communications, explained the best practices of continuous testing at high scale, which is rele...
Container technology is sending shock waves through the world of cloud computing. Heralded as the 'next big thing,' containers provide software owners a consistent way to package their software and dependencies while infrastructure operators benefit from a standard way to deploy and run them. Containers present new challenges for tracking usage due to their dynamic nature. They can also be deployed to bare metal, virtual machines and various cloud platforms. How do software owners track the usag...
"Alert Logic is a managed security service provider that basically deploys technologies, but we support those technologies with the people and process behind it," stated Stephen Coty, Chief Security Evangelist at Alert Logic, in this SYS-CON.tv interview at 16th Cloud Expo, held June 9-11, 2015, at the Javits Center in New York City.
"ProfitBricks was founded in 2010 and we are the painless cloud - and we are also the Infrastructure as a Service 2.0 company," noted Achim Weiss, Chief Executive Officer and Co-Founder of ProfitBricks, in this SYS-CON.tv interview at 16th Cloud Expo, held June 9-11, 2015, at the Javits Center in New York City.
"We specialize in testing. DevOps is all about continuous delivery and accelerating the delivery pipeline and there is no continuous delivery without testing," noted Marc Hornbeek, Sr. Solutions Architect at Spirent Communications, in this SYS-CON.tv interview at @DevOpsSummit, held June 9-11, 2015, at the Javits Center in New York City.
In their session at 17th Cloud Expo, Hal Schwartz, CEO of Secure Infrastructure & Services (SIAS), and Chuck Paolillo, CTO of Secure Infrastructure & Services (SIAS), provide a study of cloud adoption trends and the power and flexibility of IBM Power and Pureflex cloud solutions. In his role as CEO of Secure Infrastructure & Services (SIAS), Hal Schwartz provides leadership and direction for the company.
SYS-CON Events announced today that MobiDev, a software development company, will exhibit at the 17th International Cloud Expo®, which will take place November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. MobiDev is a software development company with representative offices in Atlanta (US), Sheffield (UK) and Würzburg (Germany); and development centers in Ukraine. Since 2009 it has grown from a small group of passionate engineers and business managers to a full-scale mobi...
In his keynote at 16th Cloud Expo, Rodney Rogers, CEO of Virtustream, discussed the evolution of the company from inception to its recent acquisition by EMC – including personal insights, lessons learned (and some WTF moments) along the way. Learn how Virtustream’s unique approach of combining the economics and elasticity of the consumer cloud model with proper performance, application automation and security into a platform became a breakout success with enterprise customers and a natural fit f...
The Internet of Everything (IoE) brings together people, process, data and things to make networked connections more relevant and valuable than ever before – transforming information into knowledge and knowledge into wisdom. IoE creates new capabilities, richer experiences, and unprecedented opportunities to improve business and government operations, decision making and mission support capabilities.
"We have been in business for 21 years and have been building many enterprise solutions, all IT plumbing - server, storage, interconnects," stated Alex Gorbachev, President of Intelligent Systems Services, in this SYS-CON.tv interview at 16th Cloud Expo, held June 9-11, 2015, at the Javits Center in New York City.
Chuck Piluso presented a study of cloud adoption trends and the power and flexibility of IBM Power and Pureflex cloud solutions. Prior to Secure Infrastructure and Services, Mr. Piluso founded North American Telecommunication Corporation, a facilities-based Competitive Local Exchange Carrier licensed by the Public Service Commission in 10 states, serving as the company's chairman and president from 1997 to 2000. Between 1990 and 1997, Mr. Piluso served as chairman & founder of International Te...
With SaaS use rampant across organizations, how can IT departments track company data and maintain security? More and more departments are commissioning their own solutions and bypassing IT. A cloud environment is amorphous and powerful, allowing you to set up solutions for all of your user needs: document sharing and collaboration, mobile access, e-mail, even industry-specific applications. In his session at 16th Cloud Expo, Shawn Mills, President and a founder of Green House Data, discussed h...
One of the hottest areas in cloud right now is DRaaS and related offerings. In his session at 16th Cloud Expo, Dale Levesque, Disaster Recovery Product Manager with Windstream's Cloud and Data Center Marketing team, will discuss the benefits of the cloud model, which far outweigh the traditional approach, and how enterprises need to ensure that their needs are properly being met.
"We got started as search consultants. On the services side of the business we have help organizations save time and save money when they hit issues that everyone more or less hits when their data grows," noted Otis Gospodnetić, Founder of Sematext, in this SYS-CON.tv interview at @DevOpsSummit, held June 9-11, 2015, at the Javits Center in New York City.
Digital Transformation is the ultimate goal of cloud computing and related initiatives. The phrase is certainly not a precise one, and as subject to hand-waving and distortion as any high-falutin' terminology in the world of information technology. Yet it is an excellent choice of words to describe what enterprise IT—and by extension, organizations in general—should be working to achieve. Digital Transformation means: handling all the data types being found and created in the organizat...
The essence of cloud computing is that all consumable IT resources are delivered as services. In his session at 15th Cloud Expo, Yung Chou, Technology Evangelist at Microsoft, demonstrated the concepts and implementations of two important cloud computing deliveries: Infrastructure as a Service (IaaS) and Platform as a Service (PaaS). He discussed from business and technical viewpoints what exactly they are, why we care, how they are different and in what ways, and the strategies for IT to tran...
The Software Defined Data Center (SDDC), which enables organizations to seamlessly run in a hybrid cloud model (public + private cloud), is here to stay. IDC estimates that the software-defined networking market will be valued at $3.7 billion by 2016. Security is a key component and benefit of the SDDC, and offers an opportunity to build security 'from the ground up' and weave it into the environment from day one. In his session at 16th Cloud Expo, Reuven Harrison, CTO and Co-Founder of Tufin,...
The Internet of Things is not only adding billions of sensors and billions of terabytes to the Internet. It is also forcing a fundamental change in the way we envision Information Technology. For the first time, more data is being created by devices at the edge of the Internet rather than from centralized systems. What does this mean for today's IT professional? In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists addressed this very serious issue of pro...
Discussions about cloud computing are evolving into discussions about enterprise IT in general. As enterprises increasingly migrate toward their own unique clouds, new issues such as the use of containers and microservices emerge to keep things interesting. In this Power Panel at 16th Cloud Expo, moderated by Conference Chair Roger Strukhoff, panelists addressed the state of cloud computing today, and what enterprise IT professionals need to know about how the latest topics and trends affect t...