Welcome!

@CloudExpo Authors: Yeshim Deniz, Elizabeth White, Zakia Bouachraoui, Pat Romanski, Liz McMillan

Related Topics: Java IoT, Open Source Cloud, Machine Learning , Agile Computing, @CloudExpo, @DXWorldExpo

Java IoT: Article

How to Identify a MongoDB Performance Anti Pattern in Five Minutes

Analyzing the application

The other day I was looking at a web application that was using MongoDB as its central database. We were analyzing the application for potential performance problems and inside five minutes I detected what I must consider to be a MongoDB anti pattern and had a 40% impact on response time. The funny thing: It was a Java best practice that triggered it.

Analyzing the Application
The first thing I always do is look at the topology of an application to get a feel for it.

Overall Transaction Flow of the Application

As we see it's a modestly complex web application and it's using MongoDB as its datastore. Overall MongoDB contributes about 7% to the response time of the application. I noticed that about half of all transactions are actually calling MongoDB so I took a closer look.

Flow of Transactions that access MongoDB, showing 10% response time contribution of MongoDB

Those transactions that actually do call MongoDB spend about 10% of their response time in that popular document database. As a next step I wanted to know what was being executed against MongoDB.

Overview of all MongoDB commands. This shows that the JourneyCollection find and getCount contribute the most to response time

One immediately notices the first two lines, which contribute much more to the response time per transaction than all the others. What was interesting was that thegetCount on the JourneyCollection had the highest contribution time, but the developer responsible was not aware that he was even using it anywhere.

Things get interesting - the mysterious getCount call
Taking things one level deeper, we looked at all transactions that were executing the ominous getCount on the JourneyCollection.

Transactions that call JourneyCollection.getCount spend nearly half their time in MongoDB

What jumps out is that those particular transactions spend indeed over 40% of their time in MongoDB, so there was a big potential for improvement here. Another click and we looked at all MongoDB calls that were executed within the context of the same transaction as the getCount call we found so mysterious.

All MongoDB Statements that run within the same transaction context as the JourneyCollection.getCount

What struck us as interesting was that the number of executions per transaction of thefind and getCount on the JourneyCollection seemed closely connected. At this point we decided to look at the transactions themselves - we needed to understand why that particular MongoDB call was executed.

Single Transactions that execute the ominous getCount call

It's immediately clear that several different transaction types are executing that particulargetCount. What that meant for us is that the problem was likely in the core framework of that particular application rather than being specific to any one user action. Here is the interesting snippet:

The Transaction Trace shows where the getCount is executed exactly

We see that the WebService findJourneys spends all its time in the two MongoDB calls. The first is the actual find call to the Journey Collection. The MongoDB client is good at lazy loading, so the find does not actually do much yet. It only calls the server once we access the result set. We can see the round trip to MongoDB visualized in the call node at the end.

We also see the offending getCount. We see that it is executed by a method called sizewhich turns out to be com.mongodb.DBCursor.size method. This was news to our developer. Looking at several other transactions we found that this was a common pattern. Every time we search for something in the JourneyCollection the getCountwould be executed by com.mongodb.DBCursor.size. This always happens before we would really execute the send the find command to the server(which happens in the callmethod). So we used CompuwareAPM DTM's (a.k.a dynaTrace) developer integration and took a look at the offending code. Here is what we found:

BasicDBObject fields = new BasicDBObject();
fields.put(journeyStr + "." + MongoConstants.ID, 1);
fields.put(MongoConstants.ID, 0);

Collection locations = find(patternQuery, fields);

ArrayList results = new ArrayList(locations.size());
for (DBObject dbObject : locations) {
String loc = dbObject.getString(journeyStr);
results.add(loc);
}
return results;


The code looks harmless enough; we execute a find, create an array for the result and fill it. The offender is the location.size(). MongoDBs DBCursor is similar to the ResultSet in JDBC, it does not return the whole data set at once, but only a subset. As a consequence it doesn't really know how many elements the find will end up with. The only way for MongoDB to determine the final size seems to be to execute a getCountwith the same criteria as the original find. In our case that additional unnecessary roundtrip made up 40% of the web services response time!

An Anti-Patter triggered by a Best Practice
So it turns out that calling size on the DBCursor must be considered an anti-pattern! The real funny thing is that the developer thought he was writing performant code. He was following the best practice to pre-size arrays. This avoids any unnecessary re-sizing. In this particular case however, that minor theoretical performance improvement led to a 40% performance degradation!

Conclusion
The take away here is not that MongoDB is bad or doesn't perform. In fact the customer is rather happy with it. But mistakes happen and similar to other database applications we need to have the visibility into a running application to see how much it contributes to the overall response time. We also need to have that visibility to understand which statements are called where and why.

In addition this also demonstrates nicely why premature micro optimization, without leveraging an APM solution, in production will not lead to better performance. In some cases - like this one - it can actually lead to worse performance.

More Stories By Michael Kopp

Michael Kopp has over 12 years of experience as an architect and developer in the Enterprise Java space. Before coming to CompuwareAPM dynaTrace he was the Chief Architect at GoldenSource, a major player in the EDM space. In 2009 he joined dynaTrace as a technology strategist in the center of excellence. He specializes application performance management in large scale production environments with special focus on virtualized and cloud environments. His current focus is how to effectively leverage BigData Solutions and how these technologies impact and change the application landscape.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


CloudEXPO Stories
"Calligo is a cloud service provider with data privacy at the heart of what we do. We are a typical Infrastructure as a Service cloud provider but it's been designed around data privacy," explained Julian Box, CEO and co-founder of Calligo, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Transformation Abstract Encryption and privacy in the cloud is a daunting yet essential task for both security practitioners and application developers, especially as applications continue moving to the cloud at an exponential rate. What are some best practices and processes for enterprises to follow that balance both security and ease of use requirements? What technologies are available to empower enterprises with code, data and key protection from cloud providers, system administrators, insiders, government compulsion, and network hackers? Join Ambuj Kumar (CEO, Fortanix) to discuss best practices and technologies for enterprises to securely transition to a multi-cloud hybrid world.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by FTC, CUI/DFARS, EU-GDPR and the underlying National Cybersecurity Framework suggest the need for a ground-up re-thinking of security strategies and compliance actions. This session offers actionable advice based on case studies to demonstrate the impact of security and privacy attributes for the cloud-backed IoT and AI ecosystem.
@DevOpsSummit at Cloud Expo, taking place November 12-13 in New York City, NY, is co-located with 22nd international CloudEXPO | first international DXWorldEXPO and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essential.
DXWorldEXPO LLC announced today that "IoT Now" was named media sponsor of CloudEXPO | DXWorldEXPO 2018 New York, which will take place on November 11-13, 2018 in New York City, NY. IoT Now explores the evolving opportunities and challenges facing CSPs, and it passes on some lessons learned from those who have taken the first steps in next-gen IoT services.