@CloudExpo Authors: Elizabeth White, Pat Romanski, Dana Gardner, Scott Allen, Carmen Gonzalez

Related Topics: @CloudExpo, Microservices Expo, Linux Containers, Open Source Cloud, Agile Computing, Cloud Security

@CloudExpo: Article

Open Source PaaS for Parallel Cloud Application Development

Architectural advantages of cross-layer optimized parallel computing PaaS

Improving application program performance will require parallelizing the program execution at ever finer granularity now that the processor clock rates are no longer increasing. However, even in a per-application dedicated computing environment, the parallelization overhead is known to place a limit on how much application on-time throughput performance increase can be achieved via higher levels of parallel processing. The throughput-limiting impact of parallelization overhead will be significantly amplified when executing multiple internally parallelized applications on dynamically shared cloud computing environment, since the allocation of processing resources to instances and tasks of any given application cannot be done in isolation, but instead it needs to be done collectively across all the applications dynamically sharing the given pool of computing resources. There thus is an urgent need to solve this complex challenge of developing internally parallelized programs for dynamic execution on shared cloud computing infrastructure, if we expect to be able scale the performance and capacity of cloud hosted applications going forward.

PaaS Approach for Parallel Cloud Computing Challenges
The Need for Cross-layer Optimized Platform

For effectiveness of a parallel cloud computing platform, what is essential is how well the platform elements perform together, rather than individually. Consequently, the complex, interleaved challenges of parallel cloud application development and execution cannot be solved by any single layer or element of traditional computing architectures alone. Instead, a comprehensive, cross-layer optimized platform architecture is needed.

This new platform architecture will involve a parallel program development environment for producing application executables based on actors that can be efficiently mapped for concurrent execution on processing cores of dynamically shared manycore arrays. In addition, the parallel cloud computing platform will need an execution environment that, besides executing the program instructions on processing cores, takes care of the dynamic parallel execution routines on behalf of the applications, so that the processing cores are used for executing the actual client programs instead of system functions. If the hardware of the manycore processor fabric did not handle the parallel execution routines[1], eventually the system would be just managing itself rather than providing increased user application throughput as the numbers of processing cores and applications and tasks sharing them are scaled up. This difference in enabling application on-time throughput scalability is illustrated at Figures 4 and 5 (in Ch. 3 Architectural Advantages of Cross-layer Optimized Parallel Computing PaaS).

The Platform Architecture

Figure 1 below illustrates the overall architecture of the envisioned open parallel program development and execution platform as a service (PaaS).

Figure 1: Overview of the parallel cloud computing PaaS

As illustrated in Figure 1, the open parallel computing PaaS has an open-sourced parallel program development environment and a dynamic parallel execution environment. The development environment allows the platform users to produce executables of their application programs that are made of segments (tasks/actors/threads) that can execute concurrently on parallel (incl. pipelined) processing cores. The execution environment provides, besides an array of processing cores for parallel execution of the user program tasks, the capabilities to dynamically map the highest-priority ready application task instances for execution on their assigned cores. While the state (e.g. which application task instance is mapped to any given core of the shared resource pool at any given time) of the execution environment is highly dynamic during the application runtime, in the platform architecture per Figure 1, the execution environment provides for the application programs (and their developers) a virtual static view of it; any given application can assume that each of its task instances is always active and mapped to a virtual static core in an array that is virtually dedicated to that single application. The hardware automated parallel processing runtime routines of the execution environment per Figure 1 hide (to the desired level) the dynamic details of the processing hardware from the applications as well as the development environment software, thereby providing a higher level, simplified abstraction of the execution environment for the software. The raised level of the software-hardware interface per Figure 1 enables greater productivity for both realizing the much needed open, comprehensive parallel programming environment as well as for developing parallelized applications for cloud deployment, as software does not need to be concerned of the dynamic parallel execution details.

Importantly, there is the need to coordinate the various development activities concerning parallel programming and cloud computing tools etc. base technologies (e.g. languages, compilers, parallel file systems, data bases, etc.) around a common overall framework so that the individual technology elements work efficiently together, to enable high productivity development of parallelized applications for cloud deployment. ThroughPuter proposes that the elevated level of the interface to the parallel execution environment per the platform architecture of Figure 1 provides a compelling motive for why the software technology development activities for parallel cloud computing should be based on this execution environment model. More specifically, the major reasons for software ecosystem for parallel computing platform to be based on the dynamic parallel execution environment interface standard per figure include:

  1. Greater productivity through less low-level work: The execution environment in the platform architecture per Figure 1 automates dynamic parallel execution routines in (programmable) hardware, providing higher level application development interface for the software of the PaaS.
  2. Higher performance and scalability via eliminating system software overhead by hardware automation of system tasks such as optimally allocating processing core capacity, scheduling and placing application tasks for execution, inter-task communications, billing etc.
  3. Built-in cloud computing security from the hardware level up: unauthorized interactions between different applications simply not enabled in the hardware.
  4. Open source software and open standard interface between development and execution environment: users have full freedom to choose where to host the development environment as well as the parallelized application executables produced by it. Any execution environment implementation complying to the simple, open execution environment interface standard per Figure 1 is a possible hosting option so there is nothing vendor specific about this platform architecture, and users will not suffer from vendor lock-in.

Technical Overview
Application software developers access the envisioned open parallel cloud computing PaaS through its Integrated Development Environment (IDE) to build application software optimized for parallel processing on dynamically shared cloud processors. The IDE provides a web-based program flow chart, code advisor, profiler etc. (GUI) tools to assist and automate parallelizing the users' programs. The IDE also includes the automated back-end development tool chain, incl. compiler, linker and loader programs, for building and executing the user's parallelized application in a processing hardware complying to the discussed execution environment interface standard per Figure 1. The IDE further equips the user application programs with the system software that automates and optimizes the minimal (to none) interactions between the user programs and the hardware operating system of the dynamic parallel execution environment of the parallel cloud computing PaaS[2].

The IDE software can be hosted with the same parallel computing PaaS as the applications it produces. This practice avoids the need for cross-compiling, and enables straightforward and rapid-cycle interactive testing, debugging and optimization of the parallelized application programs, as well as deployment and scaling releases of the user applications.

The software of the parallel cloud computing PaaS is developed and made fully available as an open-source project, and can be integrated with popular open-source IDEs. In essence, this software project is to add the parallel programming development tools to the major open source IDE and PaaS code bases, while utilizing (and further developing) the applicable existing features from them.

The openness of the promoted comprehensive parallel cloud computing PaaS, besides the open-source IDE, is also manifested via the simple, open standard interface between the development and execution environments of the PaaS architecture. This open standard interface enables any user to host the IDE as well as the parallel program executables produced by it anywhere, e.g. at the user premises, or with ThroughPuter or any 3rd party. Alternative I/PaaS providers furthermore are encouraged to support the execution/development environment interface via their respective implementations of either side or both sides of that interface. The customizable, open-source IDE and open-standard interface to the execution environment provides the users and collaborators a flexible and productive way to approach the major, must-solve parallel cloud application development and execution challenge that is facing much of the software industry and its customers.

The efficient dynamic parallel processing features - which will be critically needed as user application throughput requirements begin exceeding what is available from conventional sequential execution models, and as the parallelized applications will be cloud hosted -- of this open-source software based PaaS are delivered by an execution environment that provides the necessary, dynamic parallel execution core to application task instance allocation, task instance to core assignment, and inter-task communication capabilities. These critical parallel execution capabilities are an integrated feature in the ThroughPuter hosted commercial PaaS offering.

For reference on ThroughPuter's implementation of the dynamic parallel execution environment for the open parallel computing PaaS architecture per Figure 1, the below Figure 2 shows ThroughPuter's realtime application load adaptive manycore processor architecture, highlighting its hardware logic automated operating system functionality enabling a number of customer application programs to securely, dynamically and cost-efficiently share the processing capacity of the manycore processor hardware.

Figure 2: Reference diagram for ThroughPuter manycore processors with hardware-automated multi-user parallel processing optimized operating system.

ThroughPuter's hardware operating system, manycore fabric memory and I/O subsystems are largely responsible for the architectural security, performance and cost-efficiency benefits of the ThroughPuter PaaS. However, the IDE hides the actual execution environment features from the user; the user does not need to be aware of the novel hardware-implemented capabilities of this dynamic parallel execution environment in order to realize the performance benefits.

A possible core to application task/instance allocation scenario over a few core allocation periods (CAPs) is illustrated in Figure 3 below, along with associated highlights of the feature benefits.

Figure 3: Dynamic core to application task instance assignment scenario in the execution environment of the PaaS per Figure 1.

In reference to the dynamic core assignment scenario per Figure 3, it shall be remembered that in the PaaS architecture per Figure 1, the software does not need to be aware of the dynamic parallel execution matters, but can instead maintain a virtual static view of the execution environment where each possible application task instance is constantly mapped to its virtual dedicated core, thus simplifying both the development environment as well as the application software while improving the development productivity and runtime performance.

Architectural Advantages of Cross-layer Optimized Parallel Computing PaaS
The platform model presented here is crucial for enabling application on-time throughput performance scalability in the age of parallel cloud computing, as illustrated in Figures 4 and 5.

Figure 4: Scalability problem in parallel cloud computing due to the system software overhead.

As illustrated in Figure 4, when relying on system software for managing the parallel execution, there is a limit to scalability of cloud computing platforms in the parallel processing era, as application performance improvement begins requiring ever finer grades of intra-application parallelism (i.e. more tasks and task instances per application). This is due to that the parallel processing system software overhead (the need to dynamically coordinate and manage concurrent tasks and parallel processing resources) increases with the number of applications as well as their tasks and instances, and the number of processing cores being dynamically shared among them. When relying on system software to handle parallel execution routines, the processing capacity of a given manycore processor (array) is split between processing user applications and system software, with the rate of system software increasing with scale, at the expense of the user applications. This causes that after some point, the system-wide application processing on-time throughput (the product of number of cores and the percentage of the cores' processing capacity available for user applications) will begin decreasing as the system is scaled up (by adding processing cores and parallelized applications and their tasks sharing the cores).

To solve this fundamental challenge affecting the scalability of cloud computing in the parallel processing era, the processing hardware needs to raise up to this challenge and handle the parallel processing routines in the hardware of the manycore processors, so that the processing cores will be optimally used for processing the user applications (rather than for processing the system functions, and/or be locked to low utilization due to non-load-adaptive allocation).

The impact of the hardware automation of the parallel processing system functions in the hardware of manycore processors per Figures 1-3 is illustrated in Figure 5 below.

Figure 5: Scalability solution for parallel cloud computing delivered via automating the parallel execution system functions in hardware.

The enabling of scalability of cloud computing platforms and cloud applications' on-time processing throughput in the emerging era of (inter and intra) application parallel processing by the execution environment model per Figure 1 serves as a further compelling reason for concentrating the efforts to address the popular parallel programming challenge via the herein presented open parallel cloud computing platform model. Parties interested in collaboration to realize this much needed comprehensive, open source parallel cloud computing platform can contact ThroughPuter via [email protected].

Further Reading
Relevant further material on the parallel program development and execution challenges is available at:


  1. These include: monitoring application processing load demands, periodically allocating processing resources (cores) among the applications based on their processing load variations and contractual entitlements, prioritizing and selecting application task instances for execution, mapping selected task instances for execution on their assigned cores and accordingly configuring the IO and memory access subsystems, arranging the inter task communications, plus contract billing based on applications' resource entitlement and usage.
  2. These interactions are mainly limited to the application program, via the PaaS tool-generated system software, providing to the hardware operating system of the execution environment (per Figure 1) a listing of its schedulable tasks/instances in their priority order; there is very little overhead in interacting with such hardware operating system. Where applicable, the hardware operating system of the PaaS is able to deduce the processing core demands and task/instance priority orders of the applications by itself by monitoring the input processing data load levels for the applications. This feature, where employed for a given application (or task group), will effectively eliminate all the parallelization system software overhead for the given application (task group).

More Stories By Mark Sandstrom

Mark Sandstrom is the president of ThroughPuter, Inc., developer of dynamic parallel program execution technologies with a business model of PaaS provider. He is an innovator and strategist with experience in the high technology industry since 1995, including at Optimum Communications Services, Inc., Turin Networks, Inc. (acquired by Force 10, then by Dell), Cyras Systems, Inc. (acquired by CIENA) and Tellabs, Inc.

Sandstrom holds an MSEE degree from Helsinki University of Technology and Executive MBA from Golden Gate University, and has been granted sixteen US and UK patents in fields of networking and computing system throughput optimization and management system streamlining.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.

@CloudExpo Stories
So you think you are a DevOps warrior, huh? Put your money (not really, it’s free) where your metrics are and prove it by taking The Ultimate DevOps Geek Quiz Challenge, sponsored by DevOps Summit. Battle through the set of tough questions created by industry thought leaders to earn your bragging rights and win some cool prizes.
Fact is, enterprises have significant legacy voice infrastructure that’s costly to replace with pure IP solutions. How can we bring this analog infrastructure into our shiny new cloud applications? There are proven methods to bind both legacy voice applications and traditional PSTN audio into cloud-based applications and services at a carrier scale. Some of the most successful implementations leverage WebRTC, WebSockets, SIP and other open source technologies. In his session at @ThingsExpo, Da...
In past @ThingsExpo presentations, Joseph di Paolantonio has explored how various Internet of Things (IoT) and data management and analytics (DMA) solution spaces will come together as sensor analytics ecosystems. This year, in his session at @ThingsExpo, Joseph di Paolantonio from DataArchon, will be adding the numerous Transportation areas, from autonomous vehicles to “Uber for containers.” While IoT data in any one area of Transportation will have a huge impact in that area, combining sensor...
@ThingsExpo has been named the Top 5 Most Influential M2M Brand by Onalytica in the ‘Machine to Machine: Top 100 Influencers and Brands.' Onalytica analyzed the online debate on M2M by looking at over 85,000 tweets to provide the most influential individuals and brands that drive the discussion. According to Onalytica the "analysis showed a very engaged community with a lot of interactive tweets. The M2M discussion seems to be more fragmented and driven by some of the major brands present in the...
If you had a chance to enter on the ground level of the largest e-commerce market in the world – would you? China is the world’s most populated country with the second largest economy and the world’s fastest growing market. It is estimated that by 2018 the Chinese market will be reaching over $30 billion in gaming revenue alone. Admittedly for a foreign company, doing business in China can be challenging. Often changing laws, administrative regulations and the often inscrutable Chinese Interne...
SYS-CON Events announced today that SoftNet Solutions will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. SoftNet Solutions specializes in Enterprise Solutions for Hadoop and Big Data. It offers customers the most open, robust, and value-conscious portfolio of solutions, services, and tools for the shortest route to success with Big Data. The unique differentiator is the ability to architect and ...
SYS-CON Events announced today that Pulzze Systems will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Pulzze Systems, Inc. provides infrastructure products for the Internet of Things to enable any connected device and system to carry out matched operations without programming. For more information, visit http://www.pulzzesystems.com.
In the next forty months – just over three years – businesses will undergo extraordinary changes. The exponential growth of digitization and machine learning will see a step function change in how businesses create value, satisfy customers, and outperform their competition. In the next forty months companies will take the actions that will see them get to the next level of the game called Capitalism. Or they won’t – game over. The winners of today and tomorrow think differently, follow different...
One of biggest questions about Big Data is “How do we harness all that information for business use quickly and effectively?” Geographic Information Systems (GIS) or spatial technology is about more than making maps, but adding critical context and meaning to data of all types, coming from all different channels – even sensors. In his session at @ThingsExpo, William (Bill) Meehan, director of utility solutions for Esri, will take a closer look at the current state of spatial technology and ar...
SYS-CON Events announced today that Interface Masters Technologies, a leader in Network Visibility and Uptime Solutions, will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Interface Masters Technologies is a leading vendor in the network monitoring and high speed networking markets. Based in the heart of Silicon Valley, Interface Masters' expertise lies in Gigabit, 10 Gigabit and 40 Gigabit Eth...
As software becomes more and more complex, we, as software developers, have been splitting up our code into smaller and smaller components. This is also true for the environment in which we run our code: going from bare metal, to VMs to the modern-day Cloud Native world of containers, schedulers and microservices. While we have figured out how to run containerized applications in the cloud using schedulers, we've yet to come up with a good solution to bridge the gap between getting your conta...
SYS-CON Media announced today that @WebRTCSummit Blog, the largest WebRTC resource in the world, has been launched. @WebRTCSummit Blog offers top articles, news stories, and blog posts from the world's well-known experts and guarantees better exposure for its authors than any other publication. @WebRTCSummit Blog can be bookmarked ▸ Here @WebRTCSummit conference site can be bookmarked ▸ Here
SYS-CON Events announced today that Streamlyzer will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Streamlyzer is a powerful analytics for video streaming service that enables video streaming providers to monitor and analyze QoE (Quality-of-Experience) from end-user devices in real time.
You have great SaaS business app ideas. You want to turn your idea quickly into a functional and engaging proof of concept. You need to be able to modify it to meet customers' needs, and you need to deliver a complete and secure SaaS application. How could you achieve all the above and yet avoid unforeseen IT requirements that add unnecessary cost and complexity? You also want your app to be responsive in any device at any time. In his session at 19th Cloud Expo, Mark Allen, General Manager of...
@ThingsExpo has been named the Top 5 Most Influential Internet of Things Brand by Onalytica in the ‘The Internet of Things Landscape 2015: Top 100 Individuals and Brands.' Onalytica analyzed Twitter conversations around the #IoT debate to uncover the most influential brands and individuals driving the conversation. Onalytica captured data from 56,224 users. The PageRank based methodology they use to extract influencers on a particular topic (tweets mentioning #InternetofThings or #IoT in this ...
SYS-CON Events announced today that Super Micro Computer, Inc., a global leader in Embedded and IoT solutions, will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 7-9, 2017, at the Javits Center in New York City, NY. Supermicro (NASDAQ: SMCI), the leading innovator in high-performance, high-efficiency server technology, is a premier provider of advanced server Building Block Solutions® for Data Center, Cloud Computing, Enterprise IT, Hadoop/Big Data, HPC and ...
Cloud based infrastructure deployment is becoming more and more appealing to customers, from Fortune 500 companies to SMEs due to its pay-as-you-go model. Enterprise storage vendors are able to reach out to these customers by integrating in cloud based deployments; this needs adaptability and interoperability of the products confirming to cloud standards such as OpenStack, CloudStack, or Azure. As compared to off the shelf commodity storage, enterprise storages by its reliability, high-availabil...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at @ThingsExpo, James Kirkland, Red Hat's Chief Arch...
@DevOpsSummit has been named the ‘Top DevOps Influencer' by iTrend. iTrend processes millions of conversations, tweets, interactions, news articles, press releases, blog posts - and extract meaning form them and analyzes mobile and desktop software platforms used to communicate, various metadata (such as geo location), and automation tools. In overall placement, @DevOpsSummit ranked as the number one ‘DevOps Influencer' followed by @CloudExpo at third, and @MicroservicesE at 24th.
The IoT industry is now at a crossroads, between the fast-paced innovation of technologies and the pending mass adoption by global enterprises. The complexity of combining rapidly evolving technologies and the need to establish practices for market acceleration pose a strong challenge to global enterprises as well as IoT vendors. In his session at @ThingsExpo, Clark Smith, senior product manager for Numerex, will discuss how Numerex, as an experienced, established IoT provider, has embraced a ...