Welcome!

@CloudExpo Authors: Elizabeth White, Liz McMillan, Pat Romanski, Steven Lamb, Dan Potter

Related Topics: @BigDataExpo, Java IoT, Open Source Cloud, Containers Expo Blog, Server Monitoring, @CloudExpo

@BigDataExpo: Blog Feed Post

Big Data – Storage Mediums and Data Structures

Big Data presents something of a storage dilemma. There is no one data store to rule them all.

My working title was Big Data, Storage Dilemma.

They say dilemma. I say dilemna. I'm serious. I spell it dilemna.

Big Data presents something of a storage dilemma. There is no one data store to rule them all.

Should different data structures be persisted to different storage mediums?

Storage Medium
Identifying the appropriate medium is a function of performance, cost, and capacity.

Random Access Memory
It's fast. Very. It's expense. Very.

If we are configuring an HP DL980 G7 server, it will cost $3,672 for 128GB of memory with 8x 16GB modules or $9,996 for 128GB of memory with 4x 32GB modules. That is $28-78 / GB.

We can configure an HP DL980 G7 server with up to 4TB of memory.

Solid State Drive
It's not as fast or as expensive as random access memory. It's faster than a hard disk drive. A lot faster. It's more expensive than a hard disk drive. A lot more expensive.

If we are configuring an HP DL980 G7 server, it will cost $4,199 for a 400GB SAS MLC drive or $7,419 for a 400GB SAS SLC drive. That is $10-18 / GB. It's a performance / size trade-off. While SLC drives often perform better, MLC drives are often available in larger sizes. Further, the read / write performance is either symmetric or asymmetric.

That, and SLC drives often have greater endurance.


Sequential
Read
(MB/s)
Sequential
Write
(MB/s)
Random
Read
(IOPS)
Random
Write
(IOPS)
Intel 520 (480GB) 550 520 50,000 50,000
Intel 520 (240GB) 550 520 50,000 80,000
Intel DC S3700 500 460 75,000 36,000

The performance of solid state drives can vary:

  • consumer / enterprise
  • MLC / eMLC / SLC
  • SATA / SAS / PCIe

The capacity of enterprise solid state drives is often less than that of enterprise hard disk drives (4TB). However, the capacity of PCIe drives such as the Fusion-io ioDrive Octal (5.12TB / 10.24TB) is greater than that of enterprise hard disk drives (4TB). In addition, the performance of PCIe drives is greater than that of SAS or SATA drives.


Sequential
Read
(MB/s)
Sequential
Write
(MB/s)
Random
Read
(IOPS)
Random
Write
(IOPS)
Intel 910 (800GB) 2,000 1,000 180,000 75,000

Hard Disk Drive

It may not be fast, but it is inexpensive.

If we are configuring an HP DL980 G7 server, it will cost $309 for a 300GB 10K drive or $649 for a 300GB 15K drive. That is $1-2 / GB. It's a performance / size trade-off. While a 15K drive will perform better than a 10K drive, it will often have less capacity. The sequential read / write performance of hard disk drives is often between 150-200MB/s. As such, a RAID configuration may be a cost effective alternative to a single solid state drive for sequential read / write access.

The capacity of enterprise hard disk drives (4TB) is often greater than that of enterprise solid state drives.

Data Structure
Hash Table

JBoss Data Grid is an in-memory data grid with the data stored in a hash table. However, JBoss Data Grid supports persistence via write-behind or write-through. For all intents and purposes (e.g. map / reduce), all of the data should fit in memory.

Access

  • Random Reads, Random Writes

Riak is a key / value store. If persistence has been configured with Bitcast, the data is stored in a log structured hash table. An in-memory hash table contains the key / value pointers. The value is a pointer to the data. As such, all of the key / value pointers must fit in memory. The data is persisted via append only log files.

Access

  • Complex Index in Memory
  • Random Reads, Sequential Writes

Point queries perform well in hash tables. Range queries do not. Though there is always map / reduce.

B-Tree
MongoDB is a document database with the data stored in a B-Tree. The data is persisted via memory mapped files.

Access

  • Partial Index (Internal Nodes) in Memory
  • Random Reads, Sequential Reads, Random Writes

CouchDB is a document database with the data stored in a B+Tree. The data is persisted via append only log files.

Access

  • Partial Index in Memory
  • Random Reads, Sequential Reads, Sequential Writes

In a B+ Tree, the data is only stored in the leaf nodes. In a B-Tree, the data is stored in both the internal nodes and the leaf nodes. The advantage of a B+ Tree is that the leaf nodes are linked. As a result, range queries perform better with a B+ Tree. However, point queries perform better with a B-Tree.

CouchDB has implemented an append only B+ Tree. An alternative is the copy-on-write (CoW) B+ Tree. A write optimization for a B-Tree is buffering. First, the data written to an internal buffer in an internal node. Second, the buffer is flushed to a leaf node. As a result, random writes are turned in to sequential writes. The cost of random writes is thus amortized.  However, I am not aware of any open source data stores that have implemented a CoW B+ Tree or have implemented buffering with a B-Tree.

Range queries perform well with a B/B+ Tree. Point queries, not as well as hash tables.

Log Structured Merge Tree
Apache HBase and Apache Cassandra are both column oriented data stores, and they have both store data in an LSM-Tree. Apache HBase has implemented a cache oblivious lookahead array (COLA). Apache Cassandra has implemented a sorted array merge tree (SAMT).

In both implementations, a write is first written to a write-ahead log. Next, it is written to a memtable. A memtable is an in-memory sorted string table (SSTable). Later, the memtable is flushed and persisted as an SSTable. As result, random writes are turned in to sequential writes. However, a point query with an LSM-Tree may require multiple random reads.

Apache HBase implemented a single-level index with HFile version 1. However, because every index was cached, it resulted in high memory usage.

Apache HBase implemented a multi-level index a la a B+ Tree with HFile (SSTable) version 2. The SSTable contains a root index, a root index with leaf indexes, or a root index with an intermediate index and leaf indexes. The root index is stored in memory. The intermediate and leaf indexes may be stored in the block cache. In addition, the SSTable contains a compound (block level) bloom filter. The bloom filter is used to determine if the data is not in the data block.

Recommendation / Access

  • Partial Index / Bloom Filter in Memory
  • Random Reads, Sequential Reads, Sequential Writes

A read optimization for an LSM-Tree is fractional cascading. The idea is that each level contains both data and pointers to data in the next level. However, I am not aware of any open source data stores that have implemented fractional cascading.

I like the idea of a hybrid / tiered storage solution for an LSM-Tree implementation with the first level in memory, second level on solid state drives, and third level on hard disk drives. I've seen this solution described in academia, but I am not aware of any open source implementations.

Conclusion
I find it interesting that key / value stores often store data in a hash table, that document stores often store data in a B+/B-Tree, and that column oriented stores often store data in an LSM-Tree. Perhaps it is because key / value stores focus on the performance of point queries, document stores support secondary indexes (MongoDB) / views  (CouchDB), and column oriented stores support range queries. Perhaps it because document stores were not created with distribution (shards / partitions) in mind and thus assume that the complete index can not be stored in memory.

Notes
I found this paper to be very helpful in examining data structures as it covers most of the ones highlighted in this post:

Efficient, Scalable, and Versatile Application and System Transaction Management for Direct Storage Layers (link)

Read the original blog entry...

More Stories By Daniel Thompson

I curate the content on this page, but the credit goes to my talented colleagues for the posts that you see here. Much of what you read on this page is the work of friends at How to JBoss, and I encourage you to drop by the site at http://www.howtojboss.com for some of the best JBoss technical and non-technical content for developers, architects and technology executives on the Web.

@CloudExpo Stories
With 15% of enterprises adopting a hybrid IT strategy, you need to set a plan to integrate hybrid cloud throughout your infrastructure. In his session at 18th Cloud Expo, Steven Dreher, Director of Solutions Architecture at Green House Data, discussed how to plan for shifting resource requirements, overcome challenges, and implement hybrid IT alongside your existing data center assets. Highlights included anticipating workload, cost and resource calculations, integrating services on both sides...
In his session at @DevOpsSummit at 19th Cloud Expo, Yoseph Reuveni, Director of Software Engineering at Jet.com, will discuss Jet.com's journey into containerizing Microsoft-based technologies like C# and F# into Docker. He will talk about lessons learned and challenges faced, the Mono framework tryout and how they deployed everything into Azure cloud. Yoseph Reuveni is a technology leader with unique experience developing and running high throughput (over 1M tps) distributed systems with extre...
Manufacturers are embracing the Industrial Internet the same way consumers are leveraging Fitbits – to improve overall health and wellness. Both can provide consistent measurement, visibility, and suggest performance improvements customized to help reach goals. Fitbit users can view real-time data and make adjustments to increase their activity. In his session at @ThingsExpo, Mark Bernardo Professional Services Leader, Americas, at GE Digital, discussed how leveraging the Industrial Internet a...
Big Data engines are powering a lot of service businesses right now. Data is collected from users from wearable technologies, web behaviors, purchase behavior as well as several arbitrary data points we’d never think of. The demand for faster and bigger engines to crunch and serve up the data to services is growing exponentially. You see a LOT of correlation between “Cloud” and “Big Data” but on Big Data and “Hybrid,” where hybrid hosting is the sanest approach to the Big Data Infrastructure pro...
In his session at 18th Cloud Expo, Sagi Brody, Chief Technology Officer at Webair Internet Development Inc., and Logan Best, Infrastructure & Network Engineer at Webair, focused on real world deployments of DDoS mitigation strategies in every layer of the network. He gave an overview of methods to prevent these attacks and best practices on how to provide protection in complex cloud platforms. He also outlined what we have found in our experience managing and running thousands of Linux and Unix ...
Cloud analytics is dramatically altering business intelligence. Some businesses will capitalize on these promising new technologies and gain key insights that’ll help them gain competitive advantage. And others won’t. Whether you’re a business leader, an IT manager, or an analyst, we want to help you and the people you need to influence with a free copy of “Cloud Analytics for Dummies,” the essential guide to this explosive new space for business intelligence.
"My role is working with customers, helping them go through this digital transformation. I spend a lot of time talking to banks, big industries, manufacturers working through how they are integrating and transforming their IT platforms and moving them forward," explained William Morrish, General Manager Product Sales at Interoute, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
A critical component of any IoT project is what to do with all the data being generated. This data needs to be captured, processed, structured, and stored in a way to facilitate different kinds of queries. Traditional data warehouse and analytical systems are mature technologies that can be used to handle certain kinds of queries, but they are not always well suited to many problems, particularly when there is a need for real-time insights.
Choosing the right cloud for your workloads is a balancing act that can cost your organization time, money and aggravation - unless you get it right the first time. Economics, speed, performance, accessibility, administrative needs and security all play a vital role in dictating your approach to the cloud. Without knowing the right questions to ask, you could wind up paying for capacity you'll never need or underestimating the resources required to run your applications.
Enterprise networks are complex. Moreover, they were designed and deployed to meet a specific set of business requirements at a specific point in time. But, the adoption of cloud services, new business applications and intensifying security policies, among other factors, require IT organizations to continuously deploy configuration changes. Therefore, enterprises are looking for better ways to automate the management of their networks while still leveraging existing capabilities, optimizing perf...
"Software-defined storage is a big problem in this industry because so many people have different definitions as they see fit to use it," stated Peter McCallum, VP of Datacenter Solutions at FalconStor Software, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
The best-practices for building IoT applications with Go Code that attendees can use to build their own IoT applications. In his session at @ThingsExpo, Indraneel Mitra, Senior Solutions Architect & Technology Evangelist at Cognizant, provided valuable information and resources for both novice and experienced developers on how to get started with IoT and Golang in a day. He also provided information on how to use Intel Arduino Kit, Go Robotics API and AWS IoT stack to build an application tha...
IoT generates lots of temporal data. But how do you unlock its value? You need to discover patterns that are repeatable in vast quantities of data, understand their meaning, and implement scalable monitoring across multiple data streams in order to monetize the discoveries and insights. Motif discovery and deep learning platforms are emerging to visualize sensor data, to search for patterns and to build application that can monitor real time streams efficiently. In his session at @ThingsExpo, ...
You think you know what’s in your data. But do you? Most organizations are now aware of the business intelligence represented by their data. Data science stands to take this to a level you never thought of – literally. The techniques of data science, when used with the capabilities of Big Data technologies, can make connections you had not yet imagined, helping you discover new insights and ask new questions of your data. In his session at @ThingsExpo, Sarbjit Sarkaria, data science team lead ...
Extracting business value from Internet of Things (IoT) data doesn’t happen overnight. There are several requirements that must be satisfied, including IoT device enablement, data analysis, real-time detection of complex events and automated orchestration of actions. Unfortunately, too many companies fall short in achieving their business goals by implementing incomplete solutions or not focusing on tangible use cases. In his general session at @ThingsExpo, Dave McCarthy, Director of Products...
Amazon has gradually rolled out parts of its IoT offerings in the last year, but these are just the tip of the iceberg. In addition to optimizing their back-end AWS offerings, Amazon is laying the ground work to be a major force in IoT – especially in the connected home and office. Amazon is extending its reach by building on its dominant Cloud IoT platform, its Dash Button strategy, recently announced Replenishment Services, the Echo/Alexa voice recognition control platform, the 6-7 strategic...
Aspose.Total for .NET is the most complete package of all file format APIs for .NET as offered by Aspose. It empowers developers to create, edit, render, print and convert between a wide range of popular document formats within any .NET, C#, ASP.NET and VB.NET applications. Aspose compiles all .NET APIs on a daily basis to ensure that it contains the most up to date versions of each of Aspose .NET APIs. If a new .NET API or a new version of existing APIs is released during the subscription peri...
Verizon Communications Inc. (NYSE, Nasdaq: VZ) and Yahoo! Inc. (Nasdaq: YHOO) have entered into a definitive agreement under which Verizon will acquire Yahoo's operating business for approximately $4.83 billion in cash, subject to customary closing adjustments. Yahoo informs, connects and entertains a global audience of more than 1 billion monthly active users** -- including 600 million monthly active mobile users*** through its search, communications and digital content products. Yahoo also co...
Ixia (Nasdaq: XXIA) has announced that NoviFlow Inc.has deployed IxNetwork® to validate the company’s designs and accelerate the delivery of its proven, reliable products. Based in Montréal, NoviFlow Inc. supports network carriers, hyperscale data center operators, and enterprises seeking greater network control and flexibility, network scalability, and the capacity to handle extremely large numbers of flows, while maintaining maximum network performance. To meet these requirements, NoviFlow in...
As companies gain momentum, the need to maintain high quality products can outstrip their development team’s bandwidth for QA. Building out a large QA team (whether in-house or outsourced) can slow down development and significantly increases costs. This eBook takes QA profiles from 5 companies who successfully scaled up production without building a large QA team and includes: What to consider when choosing CI/CD tools How culture and communication can make or break implementation