Welcome!

@CloudExpo Authors: Liz McMillan, Pat Romanski, Flint Brenton, Elizabeth White, Cameron Van Orman

Related Topics: @CloudExpo, Java IoT, Microservices Expo, Containers Expo Blog, @BigDataExpo, SDN Journal

@CloudExpo: Book Excerpt

Book Excerpt: Systems Performance: Enterprise and the Cloud | Part 1

CPUs drive all software and are often the first target for systems performance analysis

"This excerpt is from the book, "Systems Performance: Enterprise and the Cloud", authored by Brendan Gregg, published by Prentice Hall Professional, Oct. 2013, ISBN 9780133390094, Copyright © 2014 Pearson Education, Inc. For more info, please visit the publisher site:

CPUs drive all software and are often the first target for systems performance analysis. Modern systems typically have many CPUs, which are shared among all running software by the kernel scheduler. When there is more demand for CPU resources than there are resources available, process threads (or tasks) will queue, waiting their turn. Waiting can add significant latency during the runtime of applications, degrading performance.

The usage of the CPUs can be examined in detail to look for performance improvements, including eliminating unnecessary work. At a high level, CPU usage by process, thread, or task can be examined. At a lower level, the code path within applications and the kernel can be profiled and studied. At the lowest level, CPU instruction execution and cycle behavior can be studied.

This chapter consists of five parts:

  • Background introduces CPU-related terminology, basic models of CPUs, and key CPU performance concepts.
  • Architecture introduces processor and kernel scheduler architecture.
  • Methodology describes performance analysis methodologies, both observa- tional and experimental.
  • Analysis describes CPU performance analysis tools on Linux- and Solaris- based systems, including profiling, tracing, and visualizations.
  • Tuning includes examples of tunable parameters.

The first three sections provide the basis for CPU analysis, and the last two show its practical application to Linux- and Solaris-based systems.

The effects of memory I/O on CPU performance are covered, including CPU cycles stalled on memory and the performance of CPU caches. Chapter 7, Memory, continues the discussion of memory I/O, including MMU, NUMA/UMA, system interconnects, and memory busses.

Terminology
For reference, CPU-related terminology used in this chapter includes the following:

  • Processor: the physical chip that plugs into a socket on the system or pro- cessor board and contains one or more CPUs implemented as cores or hard- ware threads.
  • Core: an independent CPU instance on a multicore processor. The use of cores is a way to scale processors, called chip-level multiprocessing (CMP).
  • Hardware thread: a CPU architecture that supports executing multiple threads in parallel on a single core (including Intel's Hyper-Threading Tech- nology), where each thread is an independent CPU instance. One name for this scaling approach is multithreading.
  • CPU instruction: a single CPU operation, from its instruction set. There are instructions for arithmetic operations, memory I/O, and control logic.
  • Logical CPU: also called a virtual processor,1 an operating system CPU instance (a schedulable CPU entity). This may be implemented by the processor as a hardware thread (in which case it may also be called a virtual core), a core, or a single-core processor.
  • Scheduler: the kernel subsystem that assigns threads to run on CPUs.
  • Run queue: a queue of runnable threads that are waiting to be serviced by
  • CPUs. For Solaris, it is often called a dispatcher queue.

Other terms are introduced throughout this chapter. The Glossary includes basic terminology for reference, including CPU, CPU cycle, and stack. Also see the terminology sections in Chapters 2 and 3.

Models
The following simple models illustrate some basic principles of CPUs and CPU per- formance. Section 6.4, Architecture, digs much deeper and includes implementation- specific details.

CPU Architecture
Figure 1 shows an example CPU architecture, for a single processor with four cores and eight hardware threads in total. The physical architecture is pictured, along with how it is seen by the operating system.

Figure 1: CPU architecture

Each hardware thread is addressable as a logical CPU, so this processor appears as eight CPUs. The operating system may have some additional knowledge of topology, such as which CPUs are on the same core, to improve its scheduling decisions.

CPU Memory Caches
Processors provide various hardware caches for improving memory I/O perfor- mance. Figure 2 shows the relationship of cache sizes, which become smaller and faster (a trade-off) the closer they are to the CPU.

The caches that are present, and whether they are on the processor (integrated) or external to the processor, depend on the processor type. Earlier processors pro- vided fewer levels of integrated cache.

Figure 2: CPU cache sizes

CPU Run Queues
Figure 3 shows a CPU run queue, which is managed by the kernel scheduler.

Figure 3: CPU run queue

The thread states shown in the figure, ready to run and on-CPU, are covered in Figure 3.7 in Chapter 3, Operating Systems.

The number of software threads that are queued and ready to run is an impor- tant performance metric indicating CPU saturation. In this figure (at this instant) there are four, with an additional thread running on-CPU. The time spent waiting on a CPU run queue is sometimes called run-queue latency or dispatcher-queue latency. In this book, the term scheduler latency is used instead, as it is appropri- ate for all dispatcher types, including those that do not use queues (see the discus- sion of CFS in Section 6.4.2, Software).

For multiprocessor systems, the kernel typically provides a run queue for each CPU and aims to keep threads on the same run queue. This means that threads are more likely to keep running on the same CPUs, where the CPU caches have cached their data. (These caches are described as having cache warmth, and the approach to favor CPUs is called CPU affinity.) On NUMA systems, memory locality may also be improved, which also improves performance (this is described in Chapter 7, Memory).

It also avoids the cost of thread synchronization (mutex locks) for queue operations, which would hurt scalability if the run queue was global and shared among all CPUs.

Concepts
The following are a selection of important concepts regarding CPU performance, beginning with a summary of processor internals: the CPU clock rate and how instructions are executed. This is background for later performance analysis, particularly for understanding the cycles-per-instruction (CPI) metric.

Clock Rate
The clock is a digital signal that drives all processor logic. Each CPU instruction may take one or more cycles of the clock (called CPU cycles) to execute. CPUs exe- cute at a particular clock rate; for example, a 5 GHz CPU performs 5 billion clock cycles per second.

Some processors are able to vary their clock rate, increasing it to improve performance or decreasing it to reduce power consumption. The rate may be varied on request by the operating system, or dynamically by the processor itself. The ker- nel idle thread, for example, can request the CPU to throttle down to save power.

Clock rate is often marketed as the primary feature of the processor, but this can be a little misleading. Even if the CPU in your system appears to be fully utilized (a bottleneck), a faster clock rate may not speed up performance-it depends on what those fast CPU cycles are actually doing. If they are mostly stall cycles while waiting on memory access, executing them more quickly doesn't actually increase the CPU instruction rate or workload throughput.

Instruction
CPUs execute instructions chosen from their instruction set. An instruction includes the following steps, each processed by a component of the CPU called a functional unit:

  1. Instruction fetch
  2. Instruction decode
  3. Execute
  4. Memory access
  5. Register write-back

The last two steps are optional, depending on the instruction. Many instructions operate on registers only and do not require the memory access step.

Each of these steps takes at least a single clock cycle to be executed. Memory access is often the slowest, as it may take dozens of clock cycles to read or write to main memory, during which instruction execution has stalled (and these cycles while stalled are called stall cycles). This is why CPU caching is important, as described in Section 6.4: it can dramatically reduce the number of cycles needed for memory access.

Instruction Pipeline
The instruction pipeline is a CPU architecture that can execute multiple instructions in parallel, by executing different components of different instructions at the same time. It is similar to a factory assembly line, where stages of production can be executed in parallel, increasing throughput.

Consider the instruction steps previously listed. If each were to take a single clock cycle, it would take five cycles to complete the instruction. At each step of this instruction, only one functional unit is active and four are idle. By use of pipe- lining, multiple functional units can be active at the same time, processing differ- ent instructions in the pipeline. Ideally, the processor can then complete one instruction with every clock cycle.

Instruction Width
But we can go faster still. Multiple functional units can be included of the same type, so that even more instructions can make forward progress with each clock cycle. This CPU architecture is called superscalar and is typically used with pipe- lining to achieve a high instruction throughput.

The instruction width describes the target number of instructions to process in parallel. Modern processors are 3-wide or 4-wide, meaning they can complete up to three or four instructions per cycle. How this works depends on the processor, as there may be different numbers of functional units for each stage.

CPI, IPC
Cycles per instruction (CPI) is an important high-level metric for describing where a CPU is spending its clock cycles and for understanding the nature of CPU utilization. This metric may also be expressed as instructions per cycle (IPC), the inverse of CPI.

A high CPI indicates that CPUs are often stalled, typically for memory access. A low CPI indicates that CPUs are often not stalled and have a high instruction throughput. These metrics suggest where performance tuning efforts may be best spent.

Memory-intensive workloads, for example, may be improved by installing faster memory (DRAM), improving memory locality (software configuration), or reducing the amount of memory I/O. Installing CPUs with a higher clock rate may not improve performance to the degree expected, as the CPUs may need to wait the same amount of time for memory I/O to complete. Put differently, a faster CPU may mean more stall cycles but the same rate of completed instructions.

The actual values for high or low CPI are dependent on the processor and processor features and can be determined experimentally by running known work- loads. As an example, you may find that high-CPI workloads run with a CPI at ten or higher, and low CPI workloads run with a CPI at less than one (which is possi- ble due to instruction pipelining and width, described earlier).

It should be noted that CPI shows the efficiency of instruction processing, but not of the instructions themselves. Consider a software change that added an inefficient software loop, which operates mostly on CPU registers (no stall cycles): such a change may result in a lower overall CPI, but higher CPU usage and utilization.

Utilization
CPU utilization is measured by the time a CPU instance is busy performing work during an interval, expressed as a percentage. It can be measured as the time a CPU is not running the kernel idle thread but is instead running user-level application threads or other kernel threads, or processing interrupts.

High CPU utilization may not necessarily be a problem, but rather a sign that the system is doing work. Some people also consider this an ROI indicator: a highly utilized system is considered to have good ROI, whereas an idle system is considered wasted. Unlike with other resource types (disks), performance does not degrade steeply under high utilization, as the kernel supports priorities, preemption, and time sharing. These together allow the kernel to understand what has higher priority, and to ensure that it runs first.

The measure of CPU utilization spans all clock cycles for eligible activities, including memory stall cycles. It may seem a little counterintuitive, but a CPU may be highly utilized because it is often stalled waiting for memory I/O, not just executing instructions, as described in the previous section.

CPU utilization is often split into separate kernel- and user-time metrics.

More Stories By Brendan Gregg

Brendan Gregg, Lead Performance Engineer at Joyent, analyzes performance and scalability throughout the software stack. As Performance Lead and Kernel Engineer at Sun Microsystems (and later Oracle), his work included developing the ZFS L2ARC, a pioneering file system technology for improving performance using flash memory. He has invented and developed many performance tools, including some that ship with Mac OS X and Oracle® Solaris™ 11. His recent work has included performance visualizations for Linux and illumos kernel analysis. He is coauthor of DTrace (Prentice Hall, 2011) and Solaris™ Performance and Tools (Prentice Hall, 2007).

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@CloudExpo Stories
Join IBM November 1 at 21st Cloud Expo at the Santa Clara Convention Center in Santa Clara, CA, and learn how IBM Watson can bring cognitive services and AI to intelligent, unmanned systems. Cognitive analysis impacts today’s systems with unparalleled ability that were previously available only to manned, back-end operations. Thanks to cloud processing, IBM Watson can bring cognitive services and AI to intelligent, unmanned systems. Imagine a robot vacuum that becomes your personal assistant th...
Today traditional IT approaches leverage well-architected compute/networking domains to control what applications can access what data, and how. DevOps includes rapid application development/deployment leveraging concepts like containerization, third-party sourced applications and databases. Such applications need access to production data for its test and iteration cycles. Data Security? That sounds like a roadblock to DevOps vs. protecting the crown jewels to those in IT.
SYS-CON Events announced today that B2Cloud will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. B2Cloud specializes in IoT devices for preventive and predictive maintenance in any kind of equipment retrieving data like Energy consumption, working time, temperature, humidity, pressure, etc.
SYS-CON Events announced today that Cedexis will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Cedexis is the leader in data-driven enterprise global traffic management. Whether optimizing traffic through datacenters, clouds, CDNs, or any combination, Cedexis solutions drive quality and cost-effectiveness.
Many companies start their journey to the cloud in the DevOps environment, where software engineers want self-service access to the custom tools and frameworks they need. Machine learning technology can help IT departments keep up with these demands. In his session at 21st Cloud Expo, Ajay Gulati, Co-Founder, CTO and Board Member at ZeroStack, will discuss the use of machine learning for automating provisioning of DevOps resources, taking the burden off IT teams.
SYS-CON Events announced today that NetApp has been named “Bronze Sponsor” of SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. NetApp is the data authority for hybrid cloud. NetApp provides a full range of hybrid cloud data services that simplify management of applications and data across cloud and on-premises environments to accelerate digital transformation. Together with their partners, NetApp em...
Is advanced scheduling in Kubernetes achievable? Yes, however, how do you properly accommodate every real-life scenario that a Kubernetes user might encounter? How do you leverage advanced scheduling techniques to shape and describe each scenario in easy-to-use rules and configurations? In his session at @DevOpsSummit at 21st Cloud Expo, Oleg Chunikhin, CTO at Kublr, will answer these questions and demonstrate techniques for implementing advanced scheduling. For example, using spot instances ...
Why Federal cloud? What is in Federal Clouds and integrations? This session will identify the process and the FedRAMP initiative. But is it sufficient? What is the remedy for keeping abreast of cutting-edge technology? In his session at 21st Cloud Expo, Rasananda Behera will examine the proposed solutions: Private or public or hybrid cloud Responsible governing bodies How can we accomplish?
Cloud-based disaster recovery is critical to any production environment and is a high priority for many enterprise organizations today. Nearly 40% of organizations have had to execute their BCDR plan due to a service disruption in the past two years. Zerto on IBM Cloud offer VMware and Microsoft customers simple, automated recovery of on-premise VMware and Microsoft workloads to IBM Cloud data centers.
SYS-CON Events announced today that Ryobi Systems will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Ryobi Systems Co., Ltd., as an information service company, specialized in business support for local governments and medical industry. We are challenging to achive the precision farming with AI. For more information, visit http:...
SYS-CON Events announced today that mruby Forum will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. mruby is the lightweight implementation of the Ruby language. We introduce mruby and the mruby IoT framework that enhances development productivity. For more information, visit http://forum.mruby.org/.
Cloud applications are seeing a deluge of requests to support the exploding advanced analytics market. “Open analytics” is the emerging strategy to deliver that data through an open data access layer, in the cloud, to be directly consumed by external analytics tools and popular programming languages. An increasing number of data engineers and data scientists use a variety of platforms and advanced analytics languages such as SAS, R, Python and Java, as well as frameworks such as Hadoop and Spark...
SYS-CON Events announced today that Mobile Create USA will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Mobile Create USA Inc. is an MVNO-based business model that uses portable communication devices and cellular-based infrastructure in the development, sales, operation and mobile communications systems incorporating GPS capabi...
SYS-CON Events announced today that Enroute Lab will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Enroute Lab is an industrial design, research and development company of unmanned robotic vehicle system. For more information, please visit http://elab.co.jp/.
SYS-CON Events announced today that Nihon Micron will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Nihon Micron Co., Ltd. strives for technological innovation to establish high-density, high-precision processing technology for providing printed circuit board and metal mount RFID tags used for communication devices. For more inf...
SYS-CON Events announced today that Suzuki Inc. will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Suzuki Inc. is a semiconductor-related business, including sales of consuming parts, parts repair, and maintenance for semiconductor manufacturing machines, etc. It is also a health care business providing experimental research for...
IBM helps FinTechs and financial services companies build and monetize cognitive-enabled financial services apps quickly and at scale. Hosted on IBM Bluemix, IBM’s platform builds in customer insights, regulatory compliance analytics and security to help reduce development time and testing. In his session at 21st Cloud Expo, Lennart Frantzell, a Developer Advocate with IBM, will discuss how these tools simplify the time-consuming tasks of selection, mapping and data integration, allowing devel...
SYS-CON Events announced today that N3N will exhibit at SYS-CON's @ThingsExpo, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. N3N’s solutions increase the effectiveness of operations and control centers, increase the value of IoT investments, and facilitate real-time operational decision making. N3N enables operations teams with a four dimensional digital “big board” that consolidates real-time live video feeds alongside IoT sensor data a...
Today most companies are adopting or evaluating container technology - Docker in particular - to speed up application deployment, drive down cost, ease management and make application delivery more flexible overall. As with most new architectures, this dream takes significant work to become a reality. Even when you do get your application componentized enough and packaged properly, there are still challenges for DevOps teams to making the shift to continuous delivery and achieving that reducti...
Mobile device usage has increased exponentially during the past several years, as consumers rely on handhelds for everything from news and weather to banking and purchases. What can we expect in the next few years? The way in which we interact with our devices will fundamentally change, as businesses leverage Artificial Intelligence. We already see this taking shape as businesses leverage AI for cost savings and customer responsiveness. This trend will continue, as AI is used for more sophistica...