Welcome!

@CloudExpo Authors: Liz McMillan, Pat Romanski, Elizabeth White, Nate Vickery, Gopala Krishna Behara

Related Topics: @CloudExpo, Java IoT, @DXWorldExpo, SDN Journal

@CloudExpo: Blog Feed Post

The Promise of SaaS Customer Success Metrics

We are witnessing the evolution of SaaS metrics beyond simple, historical financial measures

Over the past few years, the SaaS community has gained a solid understanding of SaaS financial metrics, as well as many of the operational principles required to achieve them. However, there has always been an obvious gap between what happens on the top line and what happens on the ground. It’s one thing to claim that a 50% reduction in churn will result in a 2X increase in recurring revenue, but it’s quite another thing to make it happen. Achieving that 50% reduction in churn is usually a tedious and unreliable process of trial and error. This is about to change. As the SaaS industry matures, we are witnessing the evolution of SaaS metrics beyond simple, historical financial measures toward sophisticated operational measures in the form of new SaaS customer success metrics and predictive analytics.

saas customer success metrics kpi dashboard

We are witnessing the evolution of SaaS metrics beyond simple, historical financial measures
toward sophisticated SaaS customer success metrics and predictive analytics.

This is the second post in a series inspired by my ongoing collaboration with Bluenose Analytics that explores the new Metrics-driven SaaS Business and its foundation of emerging best practices in customer success metrics. [Attention SaaS CFO's and VP's of Customer Success! Please see the exclusive invitation at the end of this post if you like this series and would like to explore more in person.] The first post discussed the unique qualities of SaaS that enable the Metrics-driven SaaS business to apply a more analytic approach to management than traditional licensed software. This second post drills down on the promise of customer success metrics to bring greater rigor to the processes of churn reduction, upselling and customer success management for increased recurring revenue and decreased recurring costs of service.

saas customer success metrics

Tweet it!

An Ocean of Customer Success Data

The promise of customer success metrics is immense. Unfortunately, so is the challenge of developing them. From the initial capture of a prospect’s email address to the final cancellation of a churning customer account, the Metrics-driven SaaS Business collects and analyzes customer data. At the very beginning of a SaaS customer’s lifetime, a cookie is dropped and the usage clock starts ticking as web visits turn into trial accounts. That initial email is complemented with profile information captured on sign-up forms and augmented by third-party databases. Sales and marketing kick in and engagement activities are recorded in CRMs and marketing automation systems. Finally, a purchase is made and the ecommerce engine captures the transaction and forwards it to the financial systems for future billing. Then, the real action starts. Customers log in to the product again and again. Every important click is recorded and every customer success activity is logged.

saas customer success metrics ocean of data

The SaaS customer success metrics challenge is a big data problem,
requiring powerful data collection engines and sophisticated statistical models.

Collecting the data, unfortunately, is not even half of the battle. The Metrics-driven SaaS Business must make good use of it, turning data into information and information into action. Compared to the SaaS metrics challenge of previous years where all we had to do was master a relatively short list of SaaS financial metrics, the SaaS customer success metrics challenge is truly daunting–a bona fide big data problem. There is just no way to make sense of these volumes of data without powerful data collection engines and sophisticated descriptive and predictive statistical models. Simply defining the relevant customer success metrics is a difficult problem onto itself. But for the very first time, we have the law of large numbers tilting in our favor and the benefit it offers for reducing churn and accelerating customer acquisition far outweigh the costs.

Driving SaaS Customer Success with Metrics

The SaaS profit equation from the previous post and repeated below shows the five key financial levers of SaaS businesses, the two volume drivers: current customers and new customers, and the three units of value: recurring revenue per customer, recurring service cost per customer, and acquisition cost per customer.

SaaS profit =
current customers x ( avg recurring revenue – avg recurring cost )
– new customers x avg acquisition cost

[ Note: For the accountants in the audience,
this should look a lot like activity-based costing. Because it is. ;) ]

As SaaS executives, our financial goals are very simple: make business decisions that push these financial levers in the right directions to increase revenue and reduce costs. The challenge of maximizing SaaS profit is easily divided between the ‘current customer’ half of the calculation and the ‘new customer, half. SaaS business organizations and operating plans are often similarly divided into servicing current customers and acquiring new customers.

This second post in The Metrics-driven SaaS Business series focuses on the ‘current customers’ half. The next post in the series will focus on the ‘new customer’ half. As mentioned earlier though, pushing these financial levers is much easier said than done. Planning to increase revenue by increasing current customers with a 30% reduction in churn is easy. Reducing churn by 30% is hard. The following sections take a look at the first three financial levers: current customers (churn), average cost of service (customer success efficiency) and average recurring revenue per customer (upsells) and the principal role of SaaS customer success metrics in creating and executing operating plans that actually push them.

Leveraging Root Cause Analysis to Reduce SaaS Churn

By far the lowest hanging fruit of SaaS customer success metrics is their use in SaaS churn reduction. For a SaaS business of any reasonable size, churn uniformly represents the largest financial drain on SaaS growth and profit. Its simple math, ‘current customers’ is almost always the largest number in our SaaS profit equation above. SaaS churn is also a great place to start our exploration of SaaS customer success metrics, because at its heart, SaaS churn is a statistical concept, so modeling it operationally is fundamentally a statistical problem.

customer success metrics churn statistics

Tweet it!

[Note: If you tweeted the quote above, CONGRATULATIONS!
Welcome to the club of true SaaS metrics geeks! ]

SaaS churn represents the probability that a customer will cancel in a given period. That probability is determined by a number of factors: the value the customer sees in your SaaS product, the customer’s reliance on your SaaS product, the potential value of competitor offerings, and the internal priorities and politics within the customer’s organization. The Metrics-driven SaaS Business gathers and analyzes information on all of these predictors. Customer profiles in CRMs and accounting systems combined with direct product usage data go a very long way in describing the first two, whereas the less visible ones can be tackled through customer success surveys and expert ratings by executives, sales reps, support reps, and customer success reps.

saas customer success metrics root cause analysis

With an ocean of customer success data and the law of large numbers on our side,
we can apply well known statistical methods to identify the root causes of churn

Once we have collected the relevant information, we can apply well known statistical methods to identify the root causes of churn. There are a number of descriptive statistical methods that apply from simple cross tabulation of churn cohorts to more advanced methods like logistic regression and survival analysis. Statistics aside, we expect to find insights, such as customers in healthcare are more likely to churn than customers in financial services. If a customer has not logged in in the last 30 days, it is at severe risk of churn. Customers that use our reporting module frequently are our best advocates, and so forth. With the right data and the right analytics, root causes of churn can consistently be identified and addressed, a significant improvement over simply reducing churn from 15% to 10% in our financial forecast without having a clue as to how it will be achieved.

Predictive Analytics with SaaS Customer Success Metrics

Once we have a better understanding of why past customers churn, we can create models that predict the risk that a specific current customer will churn in the future. With sound predictions, the customer success organization can take action to prevent SaaS churn before it happens. At their heart, most of these statistical methods are simply scoring systems that estimate the probability of a given event, in the case of churn it is the probability that a customer will cancel. The predictors in our models and the models themselves can therefore be used to create key performance indicators (KPIs) for customer success that are tracked on a regular basis for each and every customer. For example, we may find that customers that stop using our product for a two week period are at a higher risk of churn, and that the risk increases the longer they do not use the system. This metric and the regression that produced it can both be used to create KPIs.

SaaS Customer Success Metrics and Product Use

Customer success metrics based on product usage data is the secret sauce within the Metrics-driven SaaS Business. In a sense, churn is simply the opposite of use. The more a customer uses your SaaS product, the less likely the customer is to churn. Not only does use indicate how much the customer values your product, prolonged use correlates strongly with switching costs. Customer success metrics that track inadequate use are key indicators of churn, while those that track deep and frequent use are strong indicators of customer advocacy. One of the smartest applications of customer success metrics based on product use is driving product use itself. By identifying customers that are struggling with your product, you can uncover opportunities to improve the user experience, offer help and education, and of course reduce churn.

saas customer success metrics product usage data

Product usage data is the secret sauce within the Metrics-driven SaaS Business.
In a sense, churn is simply the opposite of use.

Improving SaaS Customer Success Efficiency through Metrics

The same KPIs that we use for churn reduction can be applied to improve the efficiency of the customer success organization and thereby lower cost of service. They key is to go beyond simply monitoring and modeling customer success metrics to embedding them in the daily workflow of customer success reps. From the preceding example, if we know that customers that have stop using our product for two weeks are in need of immediate attention, then we can use this information to create dashboards and alerts for customer success reps. The primary goal is to direct the attention of customer success reps to customers where the reps can have the greatest impact on financial results. Conversely, the secondary goal is to not waste time on customer success activities that have no influence on the success of a customer.

The beauty of SaaS customer success metrics over SaaS financial metrics is that they apply at the individual customer level. Moreover, they can be rolled up along any dimension, such as time, customer type, product module, customer success rep, etc. to create a detailed picture of our customer success operation. At the individual account level, they can be used to create a scorecard or health index for every single account to help customer success reps monitor and manage their territories. At the aggregate level, they can be used to design the customer success territories themselves, so that customer success reps are deployed to customer accounts in the right numbers and with the right mix of skills. Customer success managers are usually familiar with a straightforward small, medium and large account approach to territory design, however, it might just be that your large accounts have the least risk of churn and the least potential for upsell! SaaS customer success metrics provide much stronger guidance and many more dimensions from which to choose for territory design.

Driving Upsells with SaaS Customer Success Metrics

SaaS customer Success metrics can also improve upselling to increase average recurring revenue per customer, the next financial lever in our SaaS profit equation. By applying the same types of statistical models we used in churn reduction to analyze past upsell purchases across customer demographics, product usage data, and so forth, we can develop predictive models and scores for upselling. Again, we can embed these models and KPIs into the daily activities of customer success reps or account managers to direct them to the accounts with the greatest upsell potential at any given time. Finally, we can use the predictive models within the product itself to automatically trigger communications with high potential customers and facilitate purchase.

Attention SaaS CFOs and VPs of Customer Success!

I will be speaking at an exclusive CFO only dinner sponsored by Bluenose Analytics this coming Tuesday, April 29 in San Francisco. Please email me directly at joelyork [at] chaotic-flow.com if you are interested in attending. This event is part of a larger, ongoing series designed to create an intimate setting for SaaS industry leaders (10-15 at a time at a nice restaurant) where they can discuss and evolve SaaS business best practices for finance and customer success. There are only a few spots left for next Tuesday, however, if there is sufficient demand, we will likely repeat it. There are also upcoming dinners focused on Customer Success operational best practices for VP’s Customer Success. If you are interested in these, please email me and I will send you the agenda. Bluenose is also considering expanding these dinners to multiple cities, so let me know even if you are not in the Bay Area.

Thanks again for following Chaotic Flow!

Cheers,

JY

PS Dinner is free!

Read the original blog entry...

More Stories By Joel York

Joel York is an Internet software executive and popular SaaS / Cloud blogger at Chaotic Flow and Cloud Ave. He is well known for his work in SaaS / cloud business models, sales and marketing strategy, and financial metrics. Professionally, he has managed global sales and marketing organizations serving over 50 countries, including local offices in the United States, United Kingdom, Germany, and India. He holds degrees in physics from Caltech and Cornell and received his MBA from the University of Chicago. Joel York is currently VP Marketing at Meltwater Group and Principal at the Internet startup consulting firm affinitos.

@CloudExpo Stories
In his Opening Keynote at 21st Cloud Expo, John Considine, General Manager of IBM Cloud Infrastructure, led attendees through the exciting evolution of the cloud. He looked at this major disruption from the perspective of technology, business models, and what this means for enterprises of all sizes. John Considine is General Manager of Cloud Infrastructure Services at IBM. In that role he is responsible for leading IBM’s public cloud infrastructure including strategy, development, and offering m...
Digital transformation is about embracing digital technologies into a company's culture to better connect with its customers, automate processes, create better tools, enter new markets, etc. Such a transformation requires continuous orchestration across teams and an environment based on open collaboration and daily experiments. In his session at 21st Cloud Expo, Alex Casalboni, Technical (Cloud) Evangelist at Cloud Academy, explored and discussed the most urgent unsolved challenges to achieve f...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...
The past few years have brought a sea change in the way applications are architected, developed, and consumed—increasing both the complexity of testing and the business impact of software failures. How can software testing professionals keep pace with modern application delivery, given the trends that impact both architectures (cloud, microservices, and APIs) and processes (DevOps, agile, and continuous delivery)? This is where continuous testing comes in. D
Mobile device usage has increased exponentially during the past several years, as consumers rely on handhelds for everything from news and weather to banking and purchases. What can we expect in the next few years? The way in which we interact with our devices will fundamentally change, as businesses leverage Artificial Intelligence. We already see this taking shape as businesses leverage AI for cost savings and customer responsiveness. This trend will continue, as AI is used for more sophistica...
The “Digital Era” is forcing us to engage with new methods to build, operate and maintain applications. This transformation also implies an evolution to more and more intelligent applications to better engage with the customers, while creating significant market differentiators. In both cases, the cloud has become a key enabler to embrace this digital revolution. So, moving to the cloud is no longer the question; the new questions are HOW and WHEN. To make this equation even more complex, most ...
Blockchain is a shared, secure record of exchange that establishes trust, accountability and transparency across business networks. Supported by the Linux Foundation's open source, open-standards based Hyperledger Project, Blockchain has the potential to improve regulatory compliance, reduce cost as well as advance trade. Are you curious about how Blockchain is built for business? In her session at 21st Cloud Expo, René Bostic, Technical VP of the IBM Cloud Unit in North America, discussed the b...
SYS-CON Events announced today that Synametrics Technologies will exhibit at SYS-CON's 22nd International Cloud Expo®, which will take place on June 5-7, 2018, at the Javits Center in New York, NY. Synametrics Technologies is a privately held company based in Plainsboro, New Jersey that has been providing solutions for the developer community since 1997. Based on the success of its initial product offerings such as WinSQL, Xeams, SynaMan and Syncrify, Synametrics continues to create and hone in...
With tough new regulations coming to Europe on data privacy in May 2018, Calligo will explain why in reality the effect is global and transforms how you consider critical data. EU GDPR fundamentally rewrites the rules for cloud, Big Data and IoT. In his session at 21st Cloud Expo, Adam Ryan, Vice President and General Manager EMEA at Calligo, examined the regulations and provided insight on how it affects technology, challenges the established rules and will usher in new levels of diligence arou...
As you move to the cloud, your network should be efficient, secure, and easy to manage. An enterprise adopting a hybrid or public cloud needs systems and tools that provide: Agility: ability to deliver applications and services faster, even in complex hybrid environments Easier manageability: enable reliable connectivity with complete oversight as the data center network evolves Greater efficiency: eliminate wasted effort while reducing errors and optimize asset utilization Security: imple...
Nordstrom is transforming the way that they do business and the cloud is the key to enabling speed and hyper personalized customer experiences. In his session at 21st Cloud Expo, Ken Schow, VP of Engineering at Nordstrom, discussed some of the key learnings and common pitfalls of large enterprises moving to the cloud. This includes strategies around choosing a cloud provider(s), architecture, and lessons learned. In addition, he covered some of the best practices for structured team migration an...
The 22nd International Cloud Expo | 1st DXWorld Expo has announced that its Call for Papers is open. Cloud Expo | DXWorld Expo, to be held June 5-7, 2018, at the Javits Center in New York, NY, brings together Cloud Computing, Digital Transformation, Big Data, Internet of Things, DevOps, Machine Learning and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding busin...
Companies are harnessing data in ways we once associated with science fiction. Analysts have access to a plethora of visualization and reporting tools, but considering the vast amount of data businesses collect and limitations of CPUs, end users are forced to design their structures and systems with limitations. Until now. As the cloud toolkit to analyze data has evolved, GPUs have stepped in to massively parallel SQL, visualization and machine learning.
Modern software design has fundamentally changed how we manage applications, causing many to turn to containers as the new virtual machine for resource management. As container adoption grows beyond stateless applications to stateful workloads, the need for persistent storage is foundational - something customers routinely cite as a top pain point. In his session at @DevOpsSummit at 21st Cloud Expo, Bill Borsari, Head of Systems Engineering at Datera, explored how organizations can reap the bene...
Kubernetes is an open source system for automating deployment, scaling, and management of containerized applications. Kubernetes was originally built by Google, leveraging years of experience with managing container workloads, and is now a Cloud Native Compute Foundation (CNCF) project. Kubernetes has been widely adopted by the community, supported on all major public and private cloud providers, and is gaining rapid adoption in enterprises. However, Kubernetes may seem intimidating and complex ...
In his session at 21st Cloud Expo, Michael Burley, a Senior Business Development Executive in IT Services at NetApp, described how NetApp designed a three-year program of work to migrate 25PB of a major telco's enterprise data to a new STaaS platform, and then secured a long-term contract to manage and operate the platform. This significant program blended the best of NetApp’s solutions and services capabilities to enable this telco’s successful adoption of private cloud storage and launching ...
In a recent survey, Sumo Logic surveyed 1,500 customers who employ cloud services such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP). According to the survey, a quarter of the respondents have already deployed Docker containers and nearly as many (23 percent) are employing the AWS Lambda serverless computing framework. It’s clear: serverless is here to stay. The adoption does come with some needed changes, within both application development and operations. Tha...
In his general session at 21st Cloud Expo, Greg Dumas, Calligo’s Vice President and G.M. of US operations, discussed the new Global Data Protection Regulation and how Calligo can help business stay compliant in digitally globalized world. Greg Dumas is Calligo's Vice President and G.M. of US operations. Calligo is an established service provider that provides an innovative platform for trusted cloud solutions. Calligo’s customers are typically most concerned about GDPR compliance, application p...
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
Smart cities have the potential to change our lives at so many levels for citizens: less pollution, reduced parking obstacles, better health, education and more energy savings. Real-time data streaming and the Internet of Things (IoT) possess the power to turn this vision into a reality. However, most organizations today are building their data infrastructure to focus solely on addressing immediate business needs vs. a platform capable of quickly adapting emerging technologies to address future ...