Welcome!

@CloudExpo Authors: Matthew McKenna, Liz McMillan, AppNeta Blog, Dan Potter, Pat Romanski

Related Topics: Cloud Security, Java IoT, Linux Containers, Containers Expo Blog, Agile Computing, @CloudExpo

Cloud Security: Blog Feed Post

Facebook Exploit Is Not Unique

Facebook isn't unique in the ability to use it to attack a third party, it's just more effective

This week's "bad news" with respect to information security centers on Facebook and the exploitation of HTTP caches to affect a DDoS attack. Reported as a 'vulnerability', this exploit takes advantage of the way the application protocol is designed to work. In fact, the same author who reports the Facebook 'vulnerability' has also shown you can use Google to do the same thing. Just about any site that enables you to submit content containing links and then retrieves those links for you (for caching purposes) could be used in this way. It's not unique to Facebook or Google, for that matter, they just have the perfect environment to make such an exploit highly effective.

The exploit works by using a site (in this case Facebook) to load content and takes advantage of the general principle of amplification to effectively DDoS a third-party site. This is a flood-based like attack, meaning it's attempting to overwhelm a server by flooding it with requests that voraciously consume server-side resources and slow everyone down - to the point of forcing it to appear "down" to legitimate users.

The requests brokered by Facebook are themselves 110% legitimate requests. The requests for an image (or PDF or large video file) are well-formed, and nothing about the requests on an individual basis could be detected as being an attack. This is, in part, why the exploit works: because the individual requests are wholly legitimate requests.

How it Works
The trigger for the "attack" is the caching service. Caches are generally excellent at, well, caching static objects with well-defined URIs. A cache doesn't have a problem finding /myimage.png. It's either there, or it's not and the cache has to go to origin to retrieve it. Where things get more difficult is when requests for content are dynamic; that is, they send parameters that the origin server interprets to determine which image to send, e.g. /myimage?id=30. This is much like an old developer trick to force the reload of dynamic content when browser or server caches indicate a match on the URL. By tacking on a random query parameter, you can "trick" the browser and the server into believing it's a brand new object, and it will go to origin to retrieve it - even though the query parameter is never used. That's where the exploit comes in.

HTTP servers accept as part of the definition of a URI any number of variable query parameters. Those parameters can be ignored or used at the discretion of the application. But when the HTTP server is looking to see if that content has been served already, it does look at those parameters. The reference for a given object is its URL, and thus tacking on a query parameter forces (or tricks if you prefer) the HTTP server to believe the object has never been served before and thus can't be retrieved from a cache.

Caches act on the same principles as an HTTP server because when you get down to brass tacks, a cache is a very specialized HTTP server, focused on mirroring content so it's closer to the user.

<img src=http://target.com/file?r=1>
<img src=http://target.com/file?r=2>
<img src=http://target.com/file?r=3>
...
<img src=http://target.com/file?r=1000>

Many, many, many, many (repeat as necessary) web applications are built using such models. Whether to retrieve text-based content or images is irrelevant to the cache. The cache looks at the request and, if it can't match it somehow, it's going to go to origin.

Which is what's possible with Facebook Notes and Google. By taking advantage of (exploiting) this design principle, if a note crafted with multiple image objects retrieved via a dynamic query is viewed by enough users at the same time, the origin can become overwhelmed or its network oversubscribed.

This is what makes it an exploit, not a vulnerability. There's nothing wrong with the behavior of these caches - they are working exactly as they were designed to act with respect to HTTP. The problem is that when the protocol and caching behavior was defined, such abusive behavior was not considered.

In other words, this is a protocol exploit not specific to Facebook (or Google). In fact, similar exploits have been used to launch attacks in the past. For example, consider some noise raised around WordPress in March 2014 that indicated it was being used to attack other sites by bypassing the cache and forcing a full reload from the origin server:

If you notice, all queries had a random value (like “?4137049=643182″) that bypassed their cache and force a full page reload every single time. It was killing their server pretty quickly.

 

But the most interesting part is that all the requests were coming from valid and legitimate WordPress sites. Yes, other WordPress sites were sending that random requests at a very large scale and bringing the site down.

The WordPress exploit was taking advantage of the way "pingbacks" work. Attackers were using sites to add pingbacks to amplify an attack on a third party site (also, ironically, a WordPress site).

It's not just Facebook, or Google - it's inherent in the way caching is designed to work.

Not Just HTTP
This isn't just an issue with HTTP. We can see similar behavior in a DNS exploit that renders DNS caching ineffective as protection against certain attack types. In the DNS case, querying a cache with a random host name results in a query to the authoritative (origin) DNS service. If you send enough random host names at the cache, eventually the DNS service is going to feel the impact and possibly choke.

In general, these types of exploits are based on protocol and well-defined system behavior. A cache is, by design, required to either return a matching object if found or go to the origin server if it is not. In both the HTTP and DNS case, the caching services are acting properly and as one would expect.

The problem is that this proper behavior can be exploited to affect a DDoS attack - against third-parties in the case of Facebook/Google and against the domain owner in the case of DNS.

These are not vulnerabilities, they are protocol exploits. This same "vulnerability" is probably present in most architectures that include caching. The difference is that Facebook's ginormous base of users allows for what is expected behavior to quickly turn into what looks like an attack.

Mitigating
The general consensus right now is the best way to mitigate this potential "attack" is to identify and either rate limit or disallow requests coming from Facebook's crawlers by IP address. In essence, the suggestion is to blacklist Facebook (and perhaps Google) to keep it from potentially overwhelming your site.

The author noted in his post regarding this exploit that:

Facebook crawler shows itself as facebookexternalhit. Right now it seems there is no other choice than to block it in order to avoid this nuisance.

The post was later updated to note that blocking by agent may not be enough, hence the consensus on IP-based blacklisting.

The problem is that attackers could simply find another site with a large user base (there are quite a few of them out there with the users to support a successful attack) and find the right mix of queries to bypass the cache (cause caches are a pretty standard part of a web-scale infrastructure) and voila! Instant attack.

Blocking Facebook isn't going to stop other potential attacks and it might seriously impede revenue generating strategies that rely on Facebook as a channel. Rate limiting based on inbound query volume for specific content will help mitigate the impact (and ensure legitimate requests continue to be served) but this requires some service to intermediate and monitor inbound requests and, upon seeing behavior indicative of a potential attack, the ability to intercede or apply the appropriate rate limiting policy. Such a policy could go further and blacklist IP addresses showing sudden increases in requests or simply blocking requests for the specified URI in question - returning instead some other content.

Another option would be to use a caching solution capable of managing dynamic content. For example, F5 Dynamic Caching includes the ability to designate parameters as either indicative of new content or not. That is, the caching service can be configured to ignore some (or all) parameters and serve content out of cache instead of hammering on the origin server.

Let's say the URI for an image was: /directory/images/dog.gif?ver=1;sz=728X90 where valid query parameters are "ver" (version) and "sz" (size). A policy can be configured to recognize "ver" as indicative of different content while all other query parameters indicate the same content and can be served out of cache. With this kind of policy an attacker could send any combination of the following and the same image would be served from cache, even though "sz" is different and there are random additional query parameters.

/directory/images/dog.gif?ver=1;sz=728X90; id=1234
/directory/images/dog.gif?ver=1;sz=728X900; id=123456
/directory/images/dog.gif?ver=1;sz=728X90; cid=1234 

By placing an application fluent cache service in front of your origin servers, when Facebook (or Google) comes knocking, you're able to handle the load.

Action Items
There have been no reports of an attack stemming from this exploitable condition in Facebook Notes or Google, so blacklisting crawlers from either Facebook or Google seems premature. Given that this condition is based on protocol behavior and system design and not a vulnerability unique to Facebook (or Google), though, it would be a good idea to have a plan in place to address, should such an attack actually occur - from there or some other site.

You should review your own architecture and evaluate its ability to withstand a sudden influx of dynamic requests for content like this, and put into place an operational plan for dealing with it should such an event occur.

For more information on protecting against all types of DDoS attacks, check out a new infographic we’ve put together here.

Read the original blog entry...

More Stories By Lori MacVittie

Lori MacVittie is responsible for education and evangelism of application services available across F5’s entire product suite. Her role includes authorship of technical materials and participation in a number of community-based forums and industry standards organizations, among other efforts. MacVittie has extensive programming experience as an application architect, as well as network and systems development and administration expertise. Prior to joining F5, MacVittie was an award-winning Senior Technology Editor at Network Computing Magazine, where she conducted product research and evaluation focused on integration with application and network architectures, and authored articles on a variety of topics aimed at IT professionals. Her most recent area of focus included SOA-related products and architectures. She holds a B.S. in Information and Computing Science from the University of Wisconsin at Green Bay, and an M.S. in Computer Science from Nova Southeastern University.

@CloudExpo Stories
"When you think about the data center today, there's constant evolution, The evolution of the data center and the needs of the consumer of technology change, and they change constantly," stated Matt Kalmenson, VP of Sales, Service and Cloud Providers at Veeam Software, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
"There's a growing demand from users for things to be faster. When you think about all the transactions or interactions users will have with your product and everything that is between those transactions and interactions - what drives us at Catchpoint Systems is the idea to measure that and to analyze it," explained Leo Vasiliou, Director of Web Performance Engineering at Catchpoint Systems, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York Ci...
As companies gain momentum, the need to maintain high quality products can outstrip their development team’s bandwidth for QA. Building out a large QA team (whether in-house or outsourced) can slow down development and significantly increases costs. This eBook takes QA profiles from 5 companies who successfully scaled up production without building a large QA team and includes: What to consider when choosing CI/CD tools How culture and communication can make or break implementation
Internet of @ThingsExpo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with the 19th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world and ThingsExpo Silicon Valley Call for Papers is now open.
Extreme Computing is the ability to leverage highly performant infrastructure and software to accelerate Big Data, machine learning, HPC, and Enterprise applications. High IOPS Storage, low-latency networks, in-memory databases, GPUs and other parallel accelerators are being used to achieve faster results and help businesses make better decisions. In his session at 18th Cloud Expo, Michael O'Neill, Strategic Business Development at NVIDIA, focused on some of the unique ways extreme computing is...
"We view the cloud not really as a specific technology but as a way of doing business and that way of doing business is transforming the way software, infrastructure and services are being delivered to business," explained Matthew Rosen, CEO and Director at Fusion, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
Redis is not only the fastest database, but it is the most popular among the new wave of databases running in containers. Redis speeds up just about every data interaction between your users or operational systems. In his session at 19th Cloud Expo, Dave Nielsen, Developer Advocate, Redis Labs, will share the functions and data structures used to solve everyday use cases that are driving Redis' popularity.
Aspose.Total for .NET is the most complete package of all file format APIs for .NET as offered by Aspose. It empowers developers to create, edit, render, print and convert between a wide range of popular document formats within any .NET, C#, ASP.NET and VB.NET applications. Aspose compiles all .NET APIs on a daily basis to ensure that it contains the most up to date versions of each of Aspose .NET APIs. If a new .NET API or a new version of existing APIs is released during the subscription peri...
Organizations planning enterprise data center consolidation and modernization projects are faced with a challenging, costly reality. Requirements to deploy modern, cloud-native applications simultaneously with traditional client/server applications are almost impossible to achieve with hardware-centric enterprise infrastructure. Compute and network infrastructure are fast moving down a software-defined path, but storage has been a laggard. Until now.
"My role is working with customers, helping them go through this digital transformation. I spend a lot of time talking to banks, big industries, manufacturers working through how they are integrating and transforming their IT platforms and moving them forward," explained William Morrish, General Manager Product Sales at Interoute, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
To leverage Continuous Delivery, enterprises must consider impacts that span functional silos, as well as applications that touch older, slower moving components. Managing the many dependencies can cause slowdowns. See how to achieve continuous delivery in the enterprise.
You think you know what’s in your data. But do you? Most organizations are now aware of the business intelligence represented by their data. Data science stands to take this to a level you never thought of – literally. The techniques of data science, when used with the capabilities of Big Data technologies, can make connections you had not yet imagined, helping you discover new insights and ask new questions of your data. In his session at @ThingsExpo, Sarbjit Sarkaria, data science team lead ...
SYS-CON Events announced today the Kubernetes and Google Container Engine Workshop, being held November 3, 2016, in conjunction with @DevOpsSummit at 19th Cloud Expo at the Santa Clara Convention Center in Santa Clara, CA. This workshop led by Sebastian Scheele introduces participants to Kubernetes and Google Container Engine (GKE). Through a combination of instructor-led presentations, demonstrations, and hands-on labs, students learn the key concepts and practices for deploying and maintainin...
Security, data privacy, reliability, and regulatory compliance are critical factors when evaluating whether to move business applications from in-house, client-hosted environments to a cloud platform. Quality assurance plays a vital role in ensuring that the appropriate level of risk assessment, verification, and validation takes place to ensure business continuity during the migration to a new cloud platform.
Extracting business value from Internet of Things (IoT) data doesn’t happen overnight. There are several requirements that must be satisfied, including IoT device enablement, data analysis, real-time detection of complex events and automated orchestration of actions. Unfortunately, too many companies fall short in achieving their business goals by implementing incomplete solutions or not focusing on tangible use cases. In his general session at @ThingsExpo, Dave McCarthy, Director of Products...
Security, data privacy, reliability and regulatory compliance are critical factors when evaluating whether to move business applications from in-house client hosted environments to a cloud platform. In her session at 18th Cloud Expo, Vandana Viswanathan, Associate Director at Cognizant, In this session, will provide an orientation to the five stages required to implement a cloud hosted solution validation strategy.
Up until last year, enterprises that were looking into cloud services usually undertook a long-term pilot with one of the large cloud providers, running test and dev workloads in the cloud. With cloud’s transition to mainstream adoption in 2015, and with enterprises migrating more and more workloads into the cloud and in between public and private environments, the single-provider approach must be revisited. In his session at 18th Cloud Expo, Yoav Mor, multi-cloud solution evangelist at Cloudy...
UpGuard has become a member of the Center for Internet Security (CIS), and will continue to help businesses expand visibility into their cyber risk by providing hardening benchmarks to all customers. By incorporating these benchmarks, UpGuard's CSTAR solution builds on its lead in providing the most complete assessment of both internal and external cyber risk. CIS benchmarks are a widely accepted set of hardening guidelines that have been publicly available for years. Numerous solutions exist t...
A critical component of any IoT project is what to do with all the data being generated. This data needs to be captured, processed, structured, and stored in a way to facilitate different kinds of queries. Traditional data warehouse and analytical systems are mature technologies that can be used to handle certain kinds of queries, but they are not always well suited to many problems, particularly when there is a need for real-time insights.
Verizon Communications Inc. (NYSE, Nasdaq: VZ) and Yahoo! Inc. (Nasdaq: YHOO) have entered into a definitive agreement under which Verizon will acquire Yahoo's operating business for approximately $4.83 billion in cash, subject to customary closing adjustments. Yahoo informs, connects and entertains a global audience of more than 1 billion monthly active users** -- including 600 million monthly active mobile users*** through its search, communications and digital content products. Yahoo also co...