Welcome!

@CloudExpo Authors: Zakia Bouachraoui, Pat Romanski, Yeshim Deniz, Liz McMillan, Elizabeth White

Related Topics: @CloudExpo, Java IoT, Linux Containers, Containers Expo Blog, @DXWorldExpo, SDN Journal

@CloudExpo: Blog Feed Post

Internet of Things, Fast Data vs. BigData

We all know the 3Vs associated with the term Big Data – volume, velocity and variety

Back when we were doing DB2 at IBM, there was an important older product called IMS which brought significant revenue. With another database product coming (based on relational technology), IBM did not want any cannibalization of the existing revenue stream. Hence we coined the phrase “dual database strategy” to justify the need for both DBMS products. In a similar vain, several vendors are concocting all kinds of terms and strategies to justify newer products under the banner of Big Data.

One such phrase is Fast Data. We all know the 3Vs associated with the term Big Data – volume, velocity and variety. It is the middle V (velocity) that says data is not static, but is changing fast, like stock market data, satellite feeds, even sensor data coming from smart meters or an aircraft engine. The question always has been how to deal with such type of changing data (as opposed to static data typical in most enterprise systems of record).

Recently I was listening to a talk by IBM and VoltDB where VoltDB tried to justify the world of “Fast Data” as co-existing with “Big Data” which is narrowed to static data warehouse or “data lake” as IBM calls it. Again, they have chosen to pigeonhole Big Data into the world of HDFS, Netezza, Impala, and batch Map-Reduce. This way, they justify the phrase Fast Data as representing operational data that is changing fast. They call VoltDB as  “the fast, operational database” implying every other database solution as slow. Incumbents like IBM, Oracle, and SAP have introduced in-memory options for speed and even NoSQL databases can process very fast reads on distributed clusters.

VoltDB folks also tried to show how the two worlds (Fast Data and their version of Big Data) will coexist. The Fast Data side will ingest and interact on streams of inbound data, do real time data analysis and export to the data warehouse. They bragged about the performance benchmark of 1m tps on a 3-node cluster scaling to 2.4m on a 12-node system running in the SoftLayer cloud (owned by IBM). They also said that this solution is much faster than Amazon’s AWS cloud. The comparison is not apple-to-apple as the SoftLayer deployment is on bare metal compared to the AWS stack of software.

I wish they call this simply – real-time data analytics, as it is mostly read type transactions and not confuse with update-heavy workloads. We will wait and see how enterprises adopt this VoltDB-SoftLayer solution in addition to their existing OLTP solutions.

More Stories By Jnan Dash

Jnan Dash is Senior Advisor at EZShield Inc., Advisor at ScaleDB and Board Member at Compassites Software Solutions. He has lived in Silicon Valley since 1979. Formerly he was the Chief Strategy Officer (Consulting) at Curl Inc., before which he spent ten years at Oracle Corporation and was the Group Vice President, Systems Architecture and Technology till 2002. He was responsible for setting Oracle's core database and application server product directions and interacted with customers worldwide in translating future needs to product plans. Before that he spent 16 years at IBM. He blogs at http://jnandash.ulitzer.com.

CloudEXPO Stories
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by FTC, CUI/DFARS, EU-GDPR and the underlying National Cybersecurity Framework suggest the need for a ground-up re-thinking of security strategies and compliance actions. This session offers actionable advice based on case studies to demonstrate the impact of security and privacy attributes for the cloud-backed IoT and AI ecosystem.
Transformation Abstract Encryption and privacy in the cloud is a daunting yet essential task for both security practitioners and application developers, especially as applications continue moving to the cloud at an exponential rate. What are some best practices and processes for enterprises to follow that balance both security and ease of use requirements? What technologies are available to empower enterprises with code, data and key protection from cloud providers, system administrators, insiders, government compulsion, and network hackers? Join Ambuj Kumar (CEO, Fortanix) to discuss best practices and technologies for enterprises to securely transition to a multi-cloud hybrid world.
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-centric compute for the most data-intensive applications. Hyperconverged systems already in place can be revitalized with vendor-agnostic, PCIe-deployed, disaggregated approach to composable, maximizing the value of previous investments.
To Really Work for Enterprises, MultiCloud Adoption Requires Far Better and Inclusive Cloud Monitoring and Cost Management … But How? Overwhelmingly, even as enterprises have adopted cloud computing and are expanding to multi-cloud computing, IT leaders remain concerned about how to monitor, manage and control costs across hybrid and multi-cloud deployments. It’s clear that traditional IT monitoring and management approaches, designed after all for on-premises data centers, are falling short in this new hybrid and dynamic environment.
With more than 30 Kubernetes solutions in the marketplace, it's tempting to think Kubernetes and the vendor ecosystem has solved the problem of operationalizing containers at scale or of automatically managing the elasticity of the underlying infrastructure that these solutions need to be truly scalable. Far from it. There are at least six major pain points that companies experience when they try to deploy and run Kubernetes in their complex environments. In this presentation, the speaker will detail these pain points and explain how cloud can address them.