@CloudExpo Authors: Elizabeth White, Yeshim Deniz, Liz McMillan, Ram Sonagara, Pat Romanski

Related Topics: @DXWorldExpo, Java IoT, @CloudExpo

@DXWorldExpo: Article

Data Lake Plumbers | @BigDataExpo @Schmarzo #BigData #IoT #AI #ML #DL

The data lake is ideal for your data science team as it liberates them from the constraints & limitations of the data warehouse

Many of my blogs promote the business benefits of the data lake, both from a “save me more money” as well as the “make me more money” perspectives. But I fear that I’m making this thing called the data lake sound like a “silver bullet" [1] – just drop the data into the data lake and everything magically works. But much like in the world of data warehousing, there is significant work that needs to be done under the covers – in areas such as metadata management, data governance and security – to ensure that the data lake will perform for a business in a production environment. Many of the processes and techniques we learned in the data warehouse will benefit us here, though there are many new tools to be aware of that can help us in the operationalization task.

I’ve asked an industry expert in metadata management and data governance, Joe DosSantos (follow Joe on twitter: @JoeDosSantos) to co-author this blog with me. Well, to be honest, this mostly reflects Joe’s experience and thinking; I just wanted to get credit for being smart enough to know when to bring someone smarter than me into the conversation!

Data Lake Benefits
You know from previous blogs that there are many benefits to the data lake including:

  • Capture data from wide range of traditional (operational, transactional) and new sources (structured and unstructured) as-is
  • Store all your data in one environment for cross-functional business analysis
  • Support the analytics and data science to uncover new customer, product, and operational insights
  • Empower front-line employees and managers, and drive a more profitable customer engagement leveraging customer, product and operational insights
  • Integrate analytic insights into operational (Finance, Manufacturing, Marketing, Sales Force, Procurement, Logistics) and management systems (Business Intelligence reports and dashboards)

The data lake is ideal for your data science team in that it liberates them from the constraints and limitations of the data warehouse, enabling the data science team to quickly ingest, test and determine if there is any value to different data sets and analytic techniques without having to go through the rigorous operational procedures that govern the data warehouse.

However, this liberty can be quite terrifying in highly regulated environments. Companies have spent years developing governance and stewardship organizations specifically to control patient information, personal contact information, account balances, and other sensitive information. The description above seems to undo all of this work by creating free and easy access to data that should be locked down.

This is why the controls of a data lake need to be very clear. Data that is onboarded into a lake must go through a rigorous set of operational procedures to manage and govern that data set to make sure that it is appropriately tagged and protected, and then provisioned only to people who have the proper authorization. Modern data tools allow for this kind of governance capability to balance the quick and easy access to data that a data scientist needs with the security that good practices (and often the government) demand.

Operationalizing the Data Lake
Operationalizing the data lake requires several non-obvious disciplines, many of which we learned from our data warehouse experiences. These disciplines include data ingestion, indexing, cataloging, metadata management, data governance and security [2].

  1. As with a data warehouse, you will need a method to bring data into your environment. As batch windows became longer and longer in the data warehouse world and business users clamored for increasingly up-to-date information, practitioners began shifting from conventional data ETL (Extract, Transform, Load) to lower latency streaming and micro-batch. This trend was extended in the big data universe with tools like Kafka, a streaming message bus, and with Spring and Sqoop to accelerate data ingest. In the big data world, you might also want to ingest unstructured data sets as well, introducing new tools like Flume. Finally, you may want to trigger complex events based on this data stream and you might do so via Spark, Gemfire, or other in-memory grids. And just to make it more complex, you will likely use several of these tools in combination depending on your data feed needs. Keep in mind that in the world of ELT (Extract, Load, Transform) (note that the order differs from E-T-L), most of these data movements are data dumps. At this point, you have simply collected lots of raw data. It’s now time to make sense of it.
  2. Next, it is useful to tag files that you have ingested. What kind of file is this? What would be useful to know about it so that I could search for it later? Zaloni Bedrock is an example of a tool to apply metadata tags to the files, which is useful for both structured and unstructured data sets.
  3. We mentioned above that one of the key requirements of our data lake is having control over who can have access to specific data sources. Generally speaking, the data loaded in steps 1 and 2 is what we call “Bronze” data, meaning that it is good enough for the business process that created it. Data in these sets will likely be sensitive and your security should reflect it. However, we need to determine rules for how the data should be modified, obfuscated, or deleted in order to make it consumable for broader audience, or what we might call “Silver” status. You need to create business rules to manage data (e.g. birthdays should be masked and social security numbers should be stored as only the last 4). Collibra is an example of a tool for this rules definition and management. It allows data rules to be set up based on logical business entities by business people rather than technologists.
  4. For those people who are familiar with governance concepts, you will recognize the difference between a policy and a control. A policy is like a speed limit sign along the highway. The control is the police officer that pulls you over if you are driving over that speed limit. Data works the same way. While Collibra establishes the policy, you need to create a method for enforcing that policy. To do this, you need to find the logical entities buried in the data (i.e. “oh look, I found a social security number!”). Examples of such products include Global IDs for scanning structured data sets with the operational systems and Waterline for scanning data inside of Hadoop.
  5. Once you have found the data that you want, you want to implement the rules. For this, there is an open source tool called Atlas that contains an orchestration capability called Falcon that helps implement the rules.
    1. Apache Atlas is a scalable and extensible set of core foundational governance services that enables enterprises to effectively and efficiently meet their compliance requirements within Hadoop and allows integration with the complete enterprise data ecosystem.
    2. Apache Falcon is a data governance engine that defines, schedules, and monitors data management policies. Falcon allows Hadoop administrators to centrally define their data pipelines, and then Falcon uses those definitions to auto-generate workflows in Apache Oozie
  6. Now that the data is loaded, you will want to enforce security through your LDAP capability or possibly through Kerberos. There are also tools like Blue Talon that simplify the ability to authorize, provision, protect, enforce and audit data security policies across your data lake.
  7. Finally, audit controls are critical. Cloudera introduced Navigator specifically to allow simple transparency to data history and lineage. Hortonworks will rely on Atlas to provide this capability.

Data that has gone through the above processes creates a view and accessibility of the data that can be made available to a wide set of users – both business analysts and data science teams.

When you build a house, the vast majority of the creative work is in the features and curbside appeal. That’s the fun part. But without the underlying plumbing, the house would quickly degrade into a money pit.

Consider the metaphor of a retail store: stocking the shelves vs. purchasing goods. When you go to the store, you don’t care about how the goods got there, but the rules for accessing the goods are everywhere. Cigarettes are behind the front desk. Pharmaceuticals must be dispensed with a prescription. Razor blades are under lock and key (for some strange reason). There are policies and enforcements on stocking the shelves so that the shopping experience is clear and easy.

To successfully operationalize the data lake, organizations need to address all of the plumbing requirements outlined in this blog that enable the business users and data science teams to have confidence in the wealth of data that the organization is amassing. The data lake plumbing processes may not be very glamorous, but without them, you’ll end up with a stinky data dump instead of a glorious data lake.


  1. A “silver bullet” is a simple and seemingly magical solution to a complicated problem.
  2. While I mention several tools, this blog is not meant to be an endorsement of these tools nor is this intended to be a comprehensive list of such tools. However, many of these tools are the same tools that we use in our data lake implementations at EMC.

Data Lake Plumbers: Operationalizing the Data Lake
Bill Schmarzo

More Stories By William Schmarzo

Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business” and “Big Data MBA: Driving Business Strategies with Data Science”, is responsible for setting strategy and defining the Big Data service offerings for Dell EMC’s Big Data Practice.

As a CTO within Dell EMC’s 2,000+ person consulting organization, he works with organizations to identify where and how to start their big data journeys. He’s written white papers, is an avid blogger and is a frequent speaker on the use of Big Data and data science to power an organization’s key business initiatives. He is a University of San Francisco School of Management (SOM) Executive Fellow where he teaches the “Big Data MBA” course. Bill also just completed a research paper on “Determining The Economic Value of Data”. Onalytica recently ranked Bill as #4 Big Data Influencer worldwide.

Bill has over three decades of experience in data warehousing, BI and analytics. Bill authored the Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements. Bill serves on the City of San Jose’s Technology Innovation Board, and on the faculties of The Data Warehouse Institute and Strata.

Previously, Bill was vice president of Analytics at Yahoo where he was responsible for the development of Yahoo’s Advertiser and Website analytics products, including the delivery of “actionable insights” through a holistic user experience. Before that, Bill oversaw the Analytic Applications business unit at Business Objects, including the development, marketing and sales of their industry-defining analytic applications.

Bill holds a Masters Business Administration from University of Iowa and a Bachelor of Science degree in Mathematics, Computer Science and Business Administration from Coe College.

@CloudExpo Stories
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Daniel Jones is CTO of EngineerBetter, helping enterprises deliver value faster. Previously he was an IT consultant, indie video games developer, head of web development in the finance sector, and an award-winning martial artist. Continuous Delivery makes it possible to exploit findings of cognitive psychology and neuroscience to increase the productivity and happiness of our teams.
The IoT Will Grow: In what might be the most obvious prediction of the decade, the IoT will continue to expand next year, with more and more devices coming online every single day. What isn’t so obvious about this prediction: where that growth will occur. The retail, healthcare, and industrial/supply chain industries will likely see the greatest growth. Forrester Research has predicted the IoT will become “the backbone” of customer value as it continues to grow. It is no surprise that retail is ...
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Business professionals no longer wonder if they'll migrate to the cloud; it's now a matter of when. The cloud environment has proved to be a major force in transitioning to an agile business model that enables quick decisions and fast implementation that solidify customer relationships. And when the cloud is combined with the power of cognitive computing, it drives innovation and transformation that achieves astounding competitive advantage.
Evan Kirstel is an internationally recognized thought leader and social media influencer in IoT (#1 in 2017), Cloud, Data Security (2016), Health Tech (#9 in 2017), Digital Health (#6 in 2016), B2B Marketing (#5 in 2015), AI, Smart Home, Digital (2017), IIoT (#1 in 2017) and Telecom/Wireless/5G. His connections are a "Who's Who" in these technologies, He is in the top 10 most mentioned/re-tweeted by CMOs and CIOs (2016) and have been recently named 5th most influential B2B marketeer in the US. H...
How is DevOps going within your organization? If you need some help measuring just how well it is going, we have prepared a list of some key DevOps metrics to track. These metrics can help you understand how your team is doing over time. The word DevOps means different things to different people. Some say it a culture and every vendor in the industry claims that their tools help with DevOps. Depending on how you define DevOps, some of these metrics may matter more or less to you and your team.
DevOpsSummit New York 2018, colocated with CloudEXPO | DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City. Digital Transformation (DX) is a major focus with the introduction of DXWorldEXPO within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term. A total of 88% of Fortune 500 companies from a generation ago are now out of bus...
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
DXWordEXPO New York 2018, colocated with CloudEXPO New York 2018 will be held November 11-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI, Machine Learning and WebRTC to one location.
@DevOpsSummit New York 2018, colocated with CloudEXPO | DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the world's largest enterprises - and delivering real results.
DXWorldEXPO LLC announced today that Dez Blanchfield joined the faculty of CloudEXPO's "10-Year Anniversary Event" which will take place on November 11-13, 2018 in New York City. Dez is a strategic leader in business and digital transformation with 25 years of experience in the IT and telecommunications industries developing strategies and implementing business initiatives. He has a breadth of expertise spanning technologies such as cloud computing, big data and analytics, cognitive computing, m...
DXWorldEXPO LLC announced today that Kevin Jackson joined the faculty of CloudEXPO's "10-Year Anniversary Event" which will take place on November 11-13, 2018 in New York City. Kevin L. Jackson is a globally recognized cloud computing expert and Founder/Author of the award winning "Cloud Musings" blog. Mr. Jackson has also been recognized as a "Top 100 Cybersecurity Influencer and Brand" by Onalytica (2015), a Huffington Post "Top 100 Cloud Computing Experts on Twitter" (2013) and a "Top 50 C...
Cloud-enabled transformation has evolved from cost saving measure to business innovation strategy -- one that combines the cloud with cognitive capabilities to drive market disruption. Learn how you can achieve the insight and agility you need to gain a competitive advantage. Industry-acclaimed CTO and cloud expert, Shankar Kalyana presents. Only the most exceptional IBMers are appointed with the rare distinction of IBM Fellow, the highest technical honor in the company. Shankar has also receive...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
The standardization of container runtimes and images has sparked the creation of an almost overwhelming number of new open source projects that build on and otherwise work with these specifications. Of course, there's Kubernetes, which orchestrates and manages collections of containers. It was one of the first and best-known examples of projects that make containers truly useful for production use. However, more recently, the container ecosystem has truly exploded. A service mesh like Istio addr...
Cloud Expo | DXWorld Expo have announced the conference tracks for Cloud Expo 2018. Cloud Expo will be held June 5-7, 2018, at the Javits Center in New York City, and November 6-8, 2018, at the Santa Clara Convention Center, Santa Clara, CA. Digital Transformation (DX) is a major focus with the introduction of DX Expo within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive ov...
DXWorldEXPO | CloudEXPO are the world's most influential, independent events where Cloud Computing was coined and where technology buyers and vendors meet to experience and discuss the big picture of Digital Transformation and all of the strategies, tactics, and tools they need to realize their goals. Sponsors of DXWorldEXPO | CloudEXPO benefit from unmatched branding, profile building and lead generation opportunities.
The dynamic nature of the cloud means that change is a constant when it comes to modern cloud-based infrastructure. Delivering modern applications to end users, therefore, is a constantly shifting challenge. Delivery automation helps IT Ops teams ensure that apps are providing an optimal end user experience over hybrid-cloud and multi-cloud environments, no matter what the current state of the infrastructure is. To employ a delivery automation strategy that reflects your business rules, making r...