Welcome!

@CloudExpo Authors: Elizabeth White, Liz McMillan, Pat Romanski, Nishanth Kadiyala, William Schmarzo

Related Topics: @CloudExpo, @BigDataExpo, @ThingsExpo

@CloudExpo: Article

It’s All About the Data: #MachineLearning | @CloudExpo #IoT #ML #BigData

The goal of machine learning sounds simple: provide systems with the ability to learn based on the information provided them

Big Data. Analytics. Internet of Things. Cloud. In the last few years, you cannot have a discussion around technology without those terms entering the conversation. They have been major technology disruptors impacting all aspects of the business. Change seems to occur at breakneck speeds and shows no sign of slowing. Today, it appears the one constant in technology is change. Constant change requires constant innovation which thereby introduces more new technologies. One of the new technologies entering the conversation is machine learning. Gartner identified machine learning as one of the top 10 technology trends for 2016. It is definitely a hot topic.

Everything old is new again
What I find fascinating about machine learning is that the basic tenets harken back to the '70s and '80s in the early years of artificial intelligence research. The work at that time was constrained by compute capacity and amount of data available. This is the key that has enabled machine learning to leap forward in recent years - both of those constraints no longer hold. Compute cycles and data are available at levels unimagined just decades ago.

The goal of machine learning sounds simple: provide systems with the ability to learn based on the information provided them. Simple as it sounds, this is counter to classic software engineering and has its challenges. Most software development we are familiar with ‘hard codes' the systems behavior based on planned and anticipated user and data interactions. The standard ‘if-then-else' model.

The algorithms required for artificial intelligence/machine learning are much more complex. They need to allow the system to develop its own analytical models based on inputs. Those models are constantly changing based on the information provided. Based on the data and those models, behavior is determined. As you can tell from the description, this results in very non-deterministic behavior. The system will analyze, interpret and react based on the information provided, modify that behavior as more information, and then feedback is provided. The analysis and behavior is constantly changing and being refined over time. Imagine developing the test suite for that system! (A topic for future discussion).

You are already reaping the benefits of machine learning
Do you have a Netflix account? Or Amazon? Both Netflix and Amazon provide a ‘recommended for you' list every time you log in. Both companies have very complex, proprietary algorithms analyzing the huge repository of information about you and all their member's transactions. Based on that information, they develop models of your expected behavior and present a list of recommendations to you. How you react to those recommendations is also fed back into the algorithms, constantly tweaking and adjusting your behavior model.

Or how about your smart phone? Think for a moment about the complexity of the simple statement, "Siri, what is the weather forecast for today?" First the software needs to be able to understand your voice, your accent, and your way of speech in order to be able to determine the actual words being spoken. If it's not sure, the software asks for clarification, and it learns from the clarification. Each time you use it, your phone gets better at understanding what you are saying. Once it understands the words, it has to process natural language into something meaningful to the system. This again requires complex algorithms analyzing the information, creating a model, and executing on its interpretation. As with parsing the words, if it's not sure, the software will prompt for clarification. That clarification will be fed back into the system that models your way of speaking and the context of the language you use.

It's all about the data
In a recent article on TechCrunch, ‘How startups can compete with enterprises in artificial intelligence and machine learning' John Melas-Kyriazi refers to data as the ‘fuel we feed into training machine learning models that can create powerful network effects at scale.' I find that a very apt analogy. The complex algorithms and models are the engine of machine learning, but without fuel, the engine - the data - won't work very well, if at all. A colleague of mine, John Williams, (Chief Strategy Officer at Collaborative Consulting) for years has been fond of saying, "It's all about the data." That could not be more true than in the world of machine learning.

Given the importance of the data to the success of any machine learning implementation, there are some key considerations to take into account:

  • Data Quality - In the world of data, this has always been an important consideration. Data cleansing and scrubbing is standard practice already in many organizations. It has become critical for machine learning implementations. Putting dirty fuel into even the best engine will bring it to a grinding halt.
  • Data Volume - Big Data is tailor-made for machine learning. The more information the algorithms and subsequent models have to work with, the better the results. The key word here is learning. We as individuals learn more as more information is provided to us. This concept is directly applicable in the machine learning world.
  • Data Timeliness - Besides volume, new and timely data is also a consideration. If the machine learning is based on a large volume of data that is completely outdated, the resulting models will not be very useful.
  • Data Pedigree - Where did the data come from? Is it a valid source? The pedigree is less important when using internal systems, as the source is well known, but many machine learning systems will be getting their data from public sources. Or potentially, from the many devices in the world of the Internet of Things. Crowd-sourcing data (for example Waze, a GPS mobile app) requires extra effort to ensure you trust the information being consumed. Imagine a new kind of cyber-attack - feeding your machine learning system bad data to impact the results. Remember Microsoft's problem with its AI Chatbot Tay learning to be a racist?

No technology negates the need for good design and planning
There is no doubt machine learning technology has amazing potential at impacting businesses across the spectrum, whether it will be in healthcare for diagnosing Alzheimer's disease to self-driving cars that were once in the realm of science fiction. No technology negates the need for good design and planning; machine learning is no different. As technologists, it's our responsibility to ensure the proper efforts have been made to supply machine learning implementations with the best fuel possible. Understanding the quality, volume, timeliness, and pedigree needs of these systems can help us navigate this new world of machine learning, leading us to successful execution, and, ultimately, providing value back to the business.

More Stories By Ed Featherston

Ed Featherston is VP, Principal Architect at Cloud Technology Partners. He brings 35 years of technology experience in designing, building, and implementing large complex solutions. He has significant expertise in systems integration, Internet/intranet, and cloud technologies. He has delivered projects in various industries, including financial services, pharmacy, government and retail.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@CloudExpo Stories
No hype cycles or predictions of zillions of things here. IoT is big. You get it. You know your business and have great ideas for a business transformation strategy. What comes next? Time to make it happen. In his session at @ThingsExpo, Jay Mason, Associate Partner at M&S Consulting, presented a step-by-step plan to develop your technology implementation strategy. He discussed the evaluation of communication standards and IoT messaging protocols, data analytics considerations, edge-to-cloud tec...
New competitors, disruptive technologies, and growing expectations are pushing every business to both adopt and deliver new digital services. This ‘Digital Transformation’ demands rapid delivery and continuous iteration of new competitive services via multiple channels, which in turn demands new service delivery techniques – including DevOps. In this power panel at @DevOpsSummit 20th Cloud Expo, moderated by DevOps Conference Co-Chair Andi Mann, panelists examined how DevOps helps to meet the de...
When growing capacity and power in the data center, the architectural trade-offs between server scale-up vs. scale-out continue to be debated. Both approaches are valid: scale-out adds multiple, smaller servers running in a distributed computing model, while scale-up adds fewer, more powerful servers that are capable of running larger workloads. It’s worth noting that there are additional, unique advantages that scale-up architectures offer. One big advantage is large memory and compute capacity...
"When we talk about cloud without compromise what we're talking about is that when people think about 'I need the flexibility of the cloud' - it's the ability to create applications and run them in a cloud environment that's far more flexible,” explained Matthew Finnie, CTO of Interoute, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
Cloud applications are seeing a deluge of requests to support the exploding advanced analytics market. “Open analytics” is the emerging strategy to deliver that data through an open data access layer, in the cloud, to be directly consumed by external analytics tools and popular programming languages. An increasing number of data engineers and data scientists use a variety of platforms and advanced analytics languages such as SAS, R, Python and Java, as well as frameworks such as Hadoop and Spark...
The Internet giants are fully embracing AI. All the services they offer to their customers are aimed at drawing a map of the world with the data they get. The AIs from these companies are used to build disruptive approaches that cannot be used by established enterprises, which are threatened by these disruptions. However, most leaders underestimate the effect this will have on their businesses. In his session at 21st Cloud Expo, Rene Buest, Director Market Research & Technology Evangelism at Ara...
Join us at Cloud Expo June 6-8 to find out how to securely connect your cloud app to any cloud or on-premises data source – without complex firewall changes. More users are demanding access to on-premises data from their cloud applications. It’s no longer a “nice-to-have” but an important differentiator that drives competitive advantages. It’s the new “must have” in the hybrid era. Users want capabilities that give them a unified view of the data to get closer to customers and grow business. The...
"We are a monitoring company. We work with Salesforce, BBC, and quite a few other big logos. We basically provide monitoring for them, structure for their cloud services and we fit into the DevOps world" explained David Gildeh, Co-founder and CEO of Outlyer, in this SYS-CON.tv interview at DevOps Summit at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
The current age of digital transformation means that IT organizations must adapt their toolset to cover all digital experiences, beyond just the end users’. Today’s businesses can no longer focus solely on the digital interactions they manage with employees or customers; they must now contend with non-traditional factors. Whether it's the power of brand to make or break a company, the need to monitor across all locations 24/7, or the ability to proactively resolve issues, companies must adapt to...
"Loom is applying artificial intelligence and machine learning into the entire log analysis process, from start to finish and at the end you will get a human touch,” explained Sabo Taylor Diab, Vice President, Marketing at Loom Systems, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
"Tintri focuses on the Ops side of the DevOps, which basically is pushing more and more of the accessibility of the infrastructure to the developers and trying to get behind the scenes," explained Dhiraj Sehgal of Tintri in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
@DevOpsSummit at Cloud Expo taking place Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center, Santa Clara, CA, is co-located with the 21st International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is ...
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
A look across the tech landscape at the disruptive technologies that are increasing in prominence and speculate as to which will be most impactful for communications – namely, AI and Cloud Computing. In his session at 20th Cloud Expo, Curtis Peterson, VP of Operations at RingCentral, highlighted the current challenges of these transformative technologies and shared strategies for preparing your organization for these changes. This “view from the top” outlined the latest trends and developments i...
The current age of digital transformation means that IT organizations must adapt their toolset to cover all digital experiences, beyond just the end users’. Today’s businesses can no longer focus solely on the digital interactions they manage with employees or customers; they must now contend with non-traditional factors. Whether it's the power of brand to make or break a company, the need to monitor across all locations 24/7, or the ability to proactively resolve issues, companies must adapt to...
"We focus on composable infrastructure. Composable infrastructure has been named by companies like Gartner as the evolution of the IT infrastructure where everything is now driven by software," explained Bruno Andrade, CEO and Founder of HTBase, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
Hardware virtualization and cloud computing allowed us to increase resource utilization and increase our flexibility to respond to business demand. Docker Containers are the next quantum leap - Are they?! Databases always represented an additional set of challenges unique to running workloads requiring a maximum of I/O, network, CPU resources combined with data locality.
For organizations that have amassed large sums of software complexity, taking a microservices approach is the first step toward DevOps and continuous improvement / development. Integrating system-level analysis with microservices makes it easier to change and add functionality to applications at any time without the increase of risk. Before you start big transformation projects or a cloud migration, make sure these changes won’t take down your entire organization.
Cloud promises the agility required by today’s digital businesses. As organizations adopt cloud based infrastructures and services, their IT resources become increasingly dynamic and hybrid in nature. Managing these require modern IT operations and tools. In his session at 20th Cloud Expo, Raj Sundaram, Senior Principal Product Manager at CA Technologies, will discuss how to modernize your IT operations in order to proactively manage your hybrid cloud and IT environments. He will be sharing bes...
Artificial intelligence, machine learning, neural networks. We’re in the midst of a wave of excitement around AI such as hasn’t been seen for a few decades. But those previous periods of inflated expectations led to troughs of disappointment. Will this time be different? Most likely. Applications of AI such as predictive analytics are already decreasing costs and improving reliability of industrial machinery. Furthermore, the funding and research going into AI now comes from a wide range of com...