Welcome!

@CloudExpo Authors: Yeshim Deniz, Elizabeth White, Pat Romanski, Liz McMillan, Zakia Bouachraoui

Related Topics: @CloudExpo, Cloud Security, @DXWorldExpo, @ThingsExpo, @DevOpsSummit

@CloudExpo: Article

Security and #MachineLearning | @CloudExpo #ML #AI #DL #CyberSecurity

For large enterprise organizations, it can be next-to-impossible to identify attacks and act to mitigate them in good time

Machine Learning May Be the Solution to Enterprise Security Woes
By Karl Zimmerman

For large enterprise organizations, it can be next-to-impossible to identify attacks and act to mitigate them in good time. That's one of the reasons executives often discover security breaches when an external researcher - or worse, a journalist - gets in touch to ask why hundreds of millions of logins for their company's services are freely available on hacker forums.

The huge volume of incoming connections, the heterogeneity of services, and the desire to avoid false positives leave enterprise security teams in a difficult spot. Finding potential security breaches is like finding a tiny needle in a very large haystack - monitoring millions of connections over thousands of servers is not something that can be managed by a team of humans.

Enterprise security is often preventative: we build a system that - we hope - reduces security risks as much as possible and deploy simple pattern matching intrusion detection systems, crossing our fingers and hoping nothing gets through.

It's not that we lack data about attacks; if fact, we have too much of it. What we lack is an intelligent system that can analyze huge volumes of data and extract actionable intelligence about security threats without a an overwhelming proportion of false positives. If the signal-to-noise ratio is too low, all we've done is to replace a huge haystack with a slightly smaller one.

One possible solution, as you might have guessed, is machine learning. Machine learning algorithms, trained on the characteristics of particular networks, are likely to be far more successful at identifying real threats and notifying the right people.

That's the basic idea behind tools like Apache Spot, an advanced threat detection system that uses machine learning to "analyze billions of events in order to detect unknown threats, insider threats, and gain a new level of visibility into the network."

Spot - which runs on top of Hadoop - uses a variety of techniques, including machine learning, whitelisting, and noise filtering to monitor data from network traffic, filter bad traffic from good, and generate a shortlist of potential security threats.

Spot uses an open data model for threats, making it relatively easy to integrate the data it produces with existing tools and to collaborate with other organizations.

Apache Spot was recently open sourced by Intel and Cloudera, and accepted as an Apache project. It was originally an Intel project called Open Network Insight (ONI). A number of other large organizations have been contributing to Spot since it was open sourced. The hope is that an open source project using a common data model will gain traction in enterprise organizations, who can collaborate to help reduce the devastating, and expensive, impact of security breaches.

More Stories By Bob Gourley

Bob Gourley writes on enterprise IT. He is a founder of Crucial Point and publisher of CTOvision.com

CloudEXPO Stories
Andi Mann, Chief Technology Advocate at Splunk, is an accomplished digital business executive with extensive global expertise as a strategist, technologist, innovator, marketer, and communicator. For over 30 years across five continents, he has built success with Fortune 500 corporations, vendors, governments, and as a leading research analyst and consultant.
Most DevOps journeys involve several phases of maturity. Research shows that the inflection point where organizations begin to see maximum value is when they implement tight integration deploying their code to their infrastructure. Success at this level is the last barrier to at-will deployment. Storage, for instance, is more capable than where we read and write data. In his session at @DevOpsSummit at 20th Cloud Expo, Josh Atwell, a Developer Advocate for NetApp, will discuss the role and value extensible storage infrastructure has in accelerating software development activities, improve code quality, reveal multiple deployment options through automated testing, and support continuous integration efforts. All this will be described using tools common in DevOps organizations.
"When you think about the data center today, there's constant evolution, The evolution of the data center and the needs of the consumer of technology change, and they change constantly," stated Matt Kalmenson, VP of Sales, Service and Cloud Providers at Veeam Software, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
Dynatrace is an application performance management software company with products for the information technology departments and digital business owners of medium and large businesses. Building the Future of Monitoring with Artificial Intelligence Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more business becomes digital the more stakeholders are interested in this data including how it relates to business. Some of these people have never used a monitoring tool before. They have a question on their mind like "How is my application doing" but no idea how to get a proper answer.
Today, we have more data to manage than ever. We also have better algorithms that help us access our data faster. Cloud is the driving force behind many of the data warehouse advancements we have enjoyed in recent years. But what are the best practices for storing data in the cloud for machine learning and data science applications?