Welcome!

@CloudExpo Authors: Elizabeth White, William Schmarzo, Todd Matters, Yeshim Deniz, Amitabh Sinha

Related Topics: @BigDataExpo, @CloudExpo, @ThingsExpo

@BigDataExpo: Blog Feed Post

Is Data Science Really Science? | @BigDataExpo #BigData #Analytics #DataScience

Science works within systems of laws such as the laws of physics, thermodynamics, mathematics, electromagnetism

My son Max is home from college and that always leads to some interesting conversations.  Max is in graduate school at Iowa State University where he is studying kinesiology and strength training.  As part of his research project, he is applying physics to athletic training in order to understand how certain types of exercises can lead to improvements in athletic speed, strength, agility, and recovery.

Figure 1:  The Laws of Kinesiology

Max was showing me one drill designed to increase the speed and thrust associated with jumping (Max added 5 inches to his vertical leap over the past 6 weeks, and can now dunk over the old man).  When I was asking him about the science behind the drill, he went into great details about the interaction between the sciences of physics, biomechanics and human anatomy.

Max could explain to me how the laws of physics (the study of the properties of matter and energy.), kinesiology (the study of human motion that mainly focuses on muscles and their functions) and biomechanics (they study of movement involved in strength exercise or in the execution of a sport skill) interacted to produce the desired outcomes.  He could explain why it worked.

And that is the heart of my challenges with treating data science as a science.  As a data scientist, I can predict what is likely to happen, but I cannot explain why it is going to happen.  I can predict when someone is likely to attrite, or respond to a promotion, or commit fraud, or pick the pink button over the blue button, but I cannot tell you why that’s going to happen.  And I believe that the inability to explain why something is going to happen is why I struggle to call “data science” a science.

Okay, let the hate mail rain down on me, but let me explain why this is an important distinction!

What Is Science?
Science
is the intellectual and practical activity encompassing the systematic study of the structure and behavior of the physical and natural world through observation and experiment.

Science works within systems of laws such as the laws of physics, thermodynamics, mathematics, electromagnetism, aerodynamics, electricity (like Ohm’s law), Newton’s law of motions, and chemistry.  Scientists can apply these laws to understand why certain actions lead to certain outcomes.  In many disciplines, it is critical (life and death critical in some cases) that the scientists (or engineers) know why something is going to occur:

  • In pharmaceuticals, chemists need to understand how certain chemicals can be combined in certain combinations (recipes) to drive human outcomes or results.
  • In mechanical engineering, building engineers need to know how certain materials and designs can be combined to support the weight of a 40 story building (that looks like it was made out of Lego blocks).
  • In electrical engineering, electrical engineers need to understand how much wiring, what type of wiring and the optimal designs are required to support the electrical needs of buildings or vehicles.

Again, the laws that underpin these disciplines can be used to understand why certain actions or combinations lead to predictable outcomes.

Big Data and the “Death” of Why
An article by Chris Anderson in 2006 titled “The End of Theory: The Data Deluge Makes the Scientific Method Obsolete” really called into question the “science” nature of the data science role.  The premise of the article was that the massive amounts of data were yielding insights about the human behaviors without requiring the heavy statistical modeling typically needed when using sampled data sets.  This is the quote that most intrigued me:

“Google conquered the advertising world with nothing more than applied mathematics. It didn’t pretend to know anything about the culture and conventions of advertising — it just assumed that better data, with better analytical tools, would win the day. And Google was right.”

With the vast amounts of detailed data available and high-powered analytic tools, it is possible to identify what works without having to worry about why it worked.  Maybe when it comes to human behaviors, there are no laws that can be used to understand (or codify) why humans take certain actions under certain conditions.  In fact, we already know that humans are illogical decision-making machines (see “Human Decision-Making in a Big Data World”).

However, there are some new developments that I think will require “data science” to become more like other “sciences.”

Internet of Things and the “Birth” of Why
The Internet of Things (IOT) will require organizations to understand and codify why certain inputs lead to predictable outcomes.  For example, it will be critical for manufacturers to understand and codify why certain components in a product break down most often, by trying to address questions such as:

  • Was the failure caused by the materials used to build the component?
  • Was the failure caused by the design of the component?
  • Was the failure caused by the use of the component?
  • Was the failure caused by the installation of the component?
  • Was the failure caused by the maintenance of the component?

As we move into the world of IoT, we will start to see increased collaboration between analytics and physics.  See what organizations like GE are doing with the concept of “Digital Twins”.

The Digital Twin involves building a digital model, or twin, of every machine – from a jet engine to a locomotive – to grow and create new business and service models through the Industrial Internet.[1]

Digital twins are computerized companions of physical assets that can be used for various purposes. Digital twins use data from sensors installed on physical objects to represent their real-time status, working condition or position.[2]

GE is building digital models that mirror the physical structures of their products and components.  This allows them to not only accelerate the development of new products, but allows them to test the products in a greater number of situations to determine metrics such as mean-time-to-failure, stress capability and structural loads.

As the worlds of physics and IoT collide, data scientist will become more like other “scientists” as their digital world will begin to be governed by the laws that govern disciplines such as physics, aerodynamics, chemistry and electricity.

Data Science and the Cost of Wrong
Another potential driver in the IoT world is the substantial cost of being wrong.  As discussed in my blog “Understanding Type I and Type II Errors”, the cost of being wrong (false positives and false negatives) has minimal impact when trying to predict human behaviors such as which customers might respond to which ads, or which customers are likely to recommend you to their friends.

However in the world of IOT, the costs of being wrong (false positives and false negatives) can have severe or even catastrophic financial, legal and liability costs.  Organizations cannot afford to have planes falling out of the skies or autonomous cars driving into crowds or pharmaceuticals accidently killing patients.

Summary
Traditionally, big data historically was not concerned with understanding or quantifying “why” certain actions occurred because for the most part, organizations were using big data to understand and predict customer behaviors (e.g., acquisition, up-sell, fraud, theft, attrition, advocacy).  The costs associated with false positives and false negatives were relatively small compared to the financial benefit or return.

And while there may never be “laws” that dictate human behaviors, in the world of IOT where organizations are melding analytics (machine learning and artificial intelligence) with physical products, we will see “data science” advancing beyond just “data” science.  In IOT, the data science team must expand to include scientists and engineers from the physical sciences so that the team can understand and quantify the “why things happen” aspect of the analytic models.  If not, the costs could be catastrophic.

[1] https://www.ge.com/digital/blog/dawn-digital-industrial-era

[2] https://en.wikipedia.org/wiki/Digital_Twins

The post Is Data Science Really Science? appeared first on InFocus Blog | Dell EMC Services.

Read the original blog entry...

More Stories By William Schmarzo

Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business”, is responsible for setting the strategy and defining the Big Data service line offerings and capabilities for the EMC Global Services organization. As part of Bill’s CTO charter, he is responsible for working with organizations to help them identify where and how to start their big data journeys. He’s written several white papers, avid blogger and is a frequent speaker on the use of Big Data and advanced analytics to power organization’s key business initiatives. He also teaches the “Big Data MBA” at the University of San Francisco School of Management.

Bill has nearly three decades of experience in data warehousing, BI and analytics. Bill authored EMC’s Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements, and co-authored with Ralph Kimball a series of articles on analytic applications. Bill has served on The Data Warehouse Institute’s faculty as the head of the analytic applications curriculum.

Previously, Bill was the Vice President of Advertiser Analytics at Yahoo and the Vice President of Analytic Applications at Business Objects.

@CloudExpo Stories
It is ironic, but perhaps not unexpected, that many organizations who want the benefits of using an Agile approach to deliver software use a waterfall approach to adopting Agile practices: they form plans, they set milestones, and they measure progress by how many teams they have engaged. Old habits die hard, but like most waterfall software projects, most waterfall-style Agile adoption efforts fail to produce the results desired. The problem is that to get the results they want, they have to ch...
We build IoT infrastructure products - when you have to integrate different devices, different systems and cloud you have to build an application to do that but we eliminate the need to build an application. Our products can integrate any device, any system, any cloud regardless of protocol," explained Peter Jung, Chief Product Officer at Pulzze Systems, in this SYS-CON.tv interview at @ThingsExpo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA
Cloud Expo, Inc. has announced today that Andi Mann and Aruna Ravichandran have been named Co-Chairs of @DevOpsSummit at Cloud Expo Silicon Valley which will take place Oct. 31-Nov. 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. "DevOps is at the intersection of technology and business-optimizing tools, organizations and processes to bring measurable improvements in productivity and profitability," said Aruna Ravichandran, vice president, DevOps product and solutions marketing...
With major technology companies and startups seriously embracing Cloud strategies, now is the perfect time to attend 21st Cloud Expo October 31 - November 2, 2017, at the Santa Clara Convention Center, CA, and June 12-14, 2018, at the Javits Center in New York City, NY, and learn what is going on, contribute to the discussions, and ensure that your enterprise is on the right path to Digital Transformation.
The Internet giants are fully embracing AI. All the services they offer to their customers are aimed at drawing a map of the world with the data they get. The AIs from these companies are used to build disruptive approaches that cannot be used by established enterprises, which are threatened by these disruptions. However, most leaders underestimate the effect this will have on their businesses. In his session at 21st Cloud Expo, Rene Buest, Director Market Research & Technology Evangelism at Ara...
"Loom is applying artificial intelligence and machine learning into the entire log analysis process, from start to finish and at the end you will get a human touch,” explained Sabo Taylor Diab, Vice President, Marketing at Loom Systems, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
Wooed by the promise of faster innovation, lower TCO, and greater agility, businesses of every shape and size have embraced the cloud at every layer of the IT stack – from apps to file sharing to infrastructure. The typical organization currently uses more than a dozen sanctioned cloud apps and will shift more than half of all workloads to the cloud by 2018. Such cloud investments have delivered measurable benefits. But they’ve also resulted in some unintended side-effects: complexity and risk. ...
"We are a monitoring company. We work with Salesforce, BBC, and quite a few other big logos. We basically provide monitoring for them, structure for their cloud services and we fit into the DevOps world" explained David Gildeh, Co-founder and CEO of Outlyer, in this SYS-CON.tv interview at DevOps Summit at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
21st International Cloud Expo, taking place October 31 - November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Me...
With major technology companies and startups seriously embracing Cloud strategies, now is the perfect time to attend 21st Cloud Expo October 31 - November 2, 2017, at the Santa Clara Convention Center, CA, and June 12-14, 2018, at the Javits Center in New York City, NY, and learn what is going on, contribute to the discussions, and ensure that your enterprise is on the right path to Digital Transformation.
SYS-CON Events announced today that Enzu will exhibit at SYS-CON's 21st Int\ernational Cloud Expo®, which will take place October 31-November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Enzu’s mission is to be the leading provider of enterprise cloud solutions worldwide. Enzu enables online businesses to use its IT infrastructure to their competitive advantage. By offering a suite of proven hosting and management services, Enzu wants companies to focus on the core of their ...
DevOps at Cloud Expo, taking place October 31 - November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 21st Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to w...
In 2014, Amazon announced a new form of compute called Lambda. We didn't know it at the time, but this represented a fundamental shift in what we expect from cloud computing. Now, all of the major cloud computing vendors want to take part in this disruptive technology. In his session at 20th Cloud Expo, Doug Vanderweide, an instructor at Linux Academy, discussed why major players like AWS, Microsoft Azure, IBM Bluemix, and Google Cloud Platform are all trying to sidestep VMs and containers wit...
Internet of @ThingsExpo, taking place October 31 - November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 21st Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The Internet of Things (IoT) is the most profound change in personal and enterprise IT since the creation of the Worldwide Web more than 20 years ago. All major researchers estimate there will be tens of billions devic...
Amazon started as an online bookseller 20 years ago. Since then, it has evolved into a technology juggernaut that has disrupted multiple markets and industries and touches many aspects of our lives. It is a relentless technology and business model innovator driving disruption throughout numerous ecosystems. Amazon’s AWS revenues alone are approaching $16B a year making it one of the largest IT companies in the world. With dominant offerings in Cloud, IoT, eCommerce, Big Data, AI, Digital Assista...
The taxi industry never saw Uber coming. Startups are a threat to incumbents like never before, and a major enabler for startups is that they are instantly “cloud ready.” If innovation moves at the pace of IT, then your company is in trouble. Why? Because your data center will not keep up with frenetic pace AWS, Microsoft and Google are rolling out new capabilities. In his session at 20th Cloud Expo, Don Browning, VP of Cloud Architecture at Turner, posited that disruption is inevitable for comp...
SYS-CON Events announced today that Cloud Academy named "Bronze Sponsor" of 21st International Cloud Expo which will take place October 31 - November 2, 2017 at the Santa Clara Convention Center in Santa Clara, CA. Cloud Academy is the industry’s most innovative, vendor-neutral cloud technology training platform. Cloud Academy provides continuous learning solutions for individuals and enterprise teams for Amazon Web Services, Microsoft Azure, Google Cloud Platform, and the most popular cloud com...
For organizations that have amassed large sums of software complexity, taking a microservices approach is the first step toward DevOps and continuous improvement / development. Integrating system-level analysis with microservices makes it easier to change and add functionality to applications at any time without the increase of risk. Before you start big transformation projects or a cloud migration, make sure these changes won’t take down your entire organization.
When growing capacity and power in the data center, the architectural trade-offs between server scale-up vs. scale-out continue to be debated. Both approaches are valid: scale-out adds multiple, smaller servers running in a distributed computing model, while scale-up adds fewer, more powerful servers that are capable of running larger workloads. It’s worth noting that there are additional, unique advantages that scale-up architectures offer. One big advantage is large memory and compute capacity...
"When we talk about cloud without compromise what we're talking about is that when people think about 'I need the flexibility of the cloud' - it's the ability to create applications and run them in a cloud environment that's far more flexible,” explained Matthew Finnie, CTO of Interoute, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.