Welcome!

@CloudExpo Authors: Elizabeth White, Pat Romanski, Harry Trott, Liz McMillan, Mamoon Yunus

Related Topics: @ThingsExpo, @CloudExpo, @BigDataExpo

@ThingsExpo: Article

Difference Between #BigData and Internet of Things | @ThingsExpo #IoT #M2M

What does it mean, as a vendor, to say that you support the Internet of Things (IoT) from an analytics perspective?

A recent argument with folks whose intelligence I hold in high regard (like Tom, Brandon, Wei, Anil, etc.) got me thinking about the following question:

What does it mean, as a vendor, to say that you support the Internet of Things (IoT) from an analytics perspective?

I think the heart of that question really boils down to this:

What are the differences between big data (which is analyzing large amounts of mostly human-generated data to support longer-duration use cases such as predictive maintenance, capacity planning, customer 360 and revenue protection) and IoT (which is aggregating and compressing massive amounts of low latency / low duration / high volume machine-generated data coming from a wide variety of sensors to support real-time use cases such as operational optimization, real-time ad bidding, fraud detection, and security breach detection)?

I don’t believe that loading sensor data into a data lake and performing data science to create predictive analytic models qualifies as doing IoT analytics.  To me, that’s just big data (and potentially REALLY BIG DATA with all that sensor data).  In order for one to claim that they can deliver IoT analytic solutions requires big data (with data science and a data lake), but IoT analytics must also include:

  1. Streaming data management with the ability to ingest, aggregate (e.g., mean, median, mode) and compress real-time data coming off a wide variety of sensor devices “at the edge” of the network, and
  2. Edge analytics that automatically analyzes real-time sensor data and renders real-time decisions (actions) at the edge of the network that optimizes operational performance (blade angle or yaw) or flags unusual performance or behaviors for immediate investigation (security breaches, fraud detection).

If you cannot manage real-time streaming data and make real-time analytics and real-time decisions at the edge, then you are not doing IOT or IOT analytics, in my humble opinion.  So what is required to support these IoT data management and analytic requirements?

The IoT “Analytics” Challenge
The Internet of Things (or Industrial Internet) operates at machine-scale, by dealing with machine-to-machine generated data.  This machine-generated data creates discrete observations (e.g., temperature, vibration, pressure, humidity) at very high signal rates (1,000s of messages/sec).  Add to this the complexity that the sensor data values rarely change (e.g., temperature operates within an acceptably small range).  However, when the values do change the ramifications, the changes will likely be important.

Consequently to support real-time edge analytics, we need to provide detailed data that can flag observations of concern, but then doesn’t overwhelm the ability to get meaningful data back to the core (data lake) for more broad-based, strategic analysis.

One way that we see organizations addressing the IoT analytics needs is via a 3-tier Analytics Architecture (see Figure 1).

Figure 1: IoT Analytics 3-Tier Architecture

We will use a wind turbine farm to help illustrate the 3-tier analytics architecture capabilities.

Tier 1 performs individual wind turbine real-time performance analysis and optimization.  Tier 1 must manage (ingest and compress) real-time data streams coming off of multiple, heterogeneous sensors. Tier 1 analyzes the data, and processes the incoming data against static or dynamically updated analytic models (e.g., rules-based, decision trees) for immediate or near-immediate actions.

Purpose-built T1 edge gateways leverage real-time data compression techniques (e.g., see the article “timeseries storage and data compression” for more information on timeseries databases) to only send a subset of the critical data (e.g., data that has changed) back to T2 and T3 (core).

Let’s say that you are monitoring the temperatures of a compressor inside of a large industrial engine.  Let’s say the average temperature of that compressor is 99 degrees, and only varies between 98 to 100 degrees within a 99% confidence level.  Let’s also say the compressor is emitting the following temperature readings 10 times a second:

99, 99, 99, 98, 98, 99, 99, 98, 99, 99, 100, 99, 99, 99, 100, 99, 98, 99, 99…

You have 10,000 of readings that don’t vary from that range.  So why send all of the readings (which from a transmission bandwidth perspective could be significant)?  Instead, use a timeseries database to only send mean, medium, mode, variances, standard deviation and other statistical variables of the 10,000 readings instead of the individual 10,000 readings.

However, let’s say that all of a sudden we start getting readings outside the normal 99% confidence level:

99, 99, 99, 100, 100, 101, 101, 102, 102, 103, 104, 104, 105, …

Then we’d apply basic Change Data Capture (CDC) techniques to capture and transmit the subset of critical data to T2 and T3 (core).

Consequently, edge gateways leverage timeseries compression techniques to drive faster automated decisions while only sending a subset of critical data to the core for further analysis and action.

The Tier 1 analytics are likely being done via an on-premise analytics server or gateway (see Figure 2).

Figure 2:  IoT Tier 1 Analytics

Tier 2 optimizes performance and predicts maintenance needs across the wind turbines in the same wind farm.  Tier 2 requires a distributed dynamic content processing rule generation and execution analytics engine that integrates and analyzes data aggregated across the potentially heterogeneous wind turbines. Cohort analysis is typical in order to identify, validate and codify performance problems and opportunities across the cohort wind turbines.  For example, in the wind farm, the Tier 2 analytics are responsible for real-time learning that can generate the optimal torque and position controls for the individual wind turbines. Tier 2 identifies and shares best practices across the wind turbines in the wind farm without having to be dependent upon the Tier 3 core analytics platform (see Figure 3).

Figure 3: Tier 2 Analytics: Optimizing Cohort Performance

Tier 3 is the data lake enabled core analytics platform. The tier 3 core analytics platform includes analytics engines, data sets and data management services (e.g., governance, metadata management, security, authentication) that enable access to the data (sensor data plus other internal and external data sources) and existing analytic models that supports data science analytic/predictive model development and refinement.  Tier 3 aggregates the critical data across all wind farms and individual turbines, and combines the sensor data with external data sources which could include weather (humidity, temperatures, precipitation, air particles, etc.), electricity prices, wind turbine maintenance history, quality scores for the wind turbine manufacturers, and performance profiles of the wind turbine mechanics and technicians (see Figure 4).

Figure 4:  Core Analytics for Analytic Model Development and Refinement

With the rapid increase in storage and processing power at the edges of the Internet of Things (for example, the Dell Edge Gateway 3000 Series), we will see more and more analytic capabilities being pushed to the edge.

How Do You Start Your IoT Journey
While the rapidly evolving expertise on the IoT edge technologies can be very exciting (graphical processing units in gateway servers with embedded machine learning capabilities with 100’s of gigabytes of storage), the starting point for the IoT journey must first address this basic question:

How effective is your organization at leveraging data and analytics to power your business (or operational) models?

We have tweaked the Big Data Business Model Maturity Index to help organizations not only understand where they sit on the maturity index with respect to the above question, but also to provide a roadmap for how organizations can advance up the maturity index to become more effective at leveraging the wealth of IOT data with advanced analytics to power their business and operational models (see Figure 5).

Figure 5:  Big Data / IoT Business Model Maturity IndexMaturity Index

To drive meaningful business impact, you will need to begin with the business and not the technology:

  • Engage the business stakeholders on day one,
  • Align the business and IT teams
  • Understand the organization’s key business and operational initiatives, and
  • Identify and prioritize the use cases (decisions/goals) that support those business initiatives.

If you want to monetize your IOT initiatives, follow those simple guidelines and you will dramatically increase the probability of your business and monetization success.

For more details on the Internet of Things revolution, check out these blogs:

The post Difference between Big Data and Internet of Things appeared first on InFocus Blog | Dell EMC Services.

More Stories By William Schmarzo

Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business”, is responsible for setting the strategy and defining the Big Data service line offerings and capabilities for the EMC Global Services organization. As part of Bill’s CTO charter, he is responsible for working with organizations to help them identify where and how to start their big data journeys. He’s written several white papers, avid blogger and is a frequent speaker on the use of Big Data and advanced analytics to power organization’s key business initiatives. He also teaches the “Big Data MBA” at the University of San Francisco School of Management.

Bill has nearly three decades of experience in data warehousing, BI and analytics. Bill authored EMC’s Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements, and co-authored with Ralph Kimball a series of articles on analytic applications. Bill has served on The Data Warehouse Institute’s faculty as the head of the analytic applications curriculum.

Previously, Bill was the Vice President of Advertiser Analytics at Yahoo and the Vice President of Analytic Applications at Business Objects.

@CloudExpo Stories
Any startup has to have a clear go –to-market strategy from the beginning. Similarly, any data science project has to have a go to production strategy from its first days, so it could go beyond proof-of-concept. Machine learning and artificial intelligence in production would result in hundreds of training pipelines and machine learning models that are continuously revised by teams of data scientists and seamlessly connected with web applications for tenants and users.
When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...
WebRTC is great technology to build your own communication tools. It will be even more exciting experience it with advanced devices, such as a 360 Camera, 360 microphone, and a depth sensor camera. In his session at @ThingsExpo, Masashi Ganeko, a manager at INFOCOM Corporation, will introduce two experimental projects from his team and what they learned from them. "Shotoku Tamago" uses the robot audition software HARK to track speakers in 360 video of a remote party. "Virtual Teleport" uses a...
IT organizations are moving to the cloud in hopes to approve efficiency, increase agility and save money. Migrating workloads might seem like a simple task, but what many businesses don’t realize is that application migration criteria differs across organizations, making it difficult for architects to arrive at an accurate TCO number. In his session at 21st Cloud Expo, Joe Kinsella, CTO of CloudHealth Technologies, will offer a systematic approach to understanding the TCO of a cloud application...
"With Digital Experience Monitoring what used to be a simple visit to a web page has exploded into app on phones, data from social media feeds, competitive benchmarking - these are all components that are only available because of some type of digital asset," explained Leo Vasiliou, Director of Web Performance Engineering at Catchpoint Systems, in this SYS-CON.tv interview at DevOps Summit at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
SYS-CON Events announced today that Secure Channels, a cybersecurity firm, will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Secure Channels, Inc. offers several products and solutions to its many clients, helping them protect critical data from being compromised and access to computer networks from the unauthorized. The company develops comprehensive data encryption security strategie...
SYS-CON Events announced today that App2Cloud will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct. 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. App2Cloud is an online Platform, specializing in migrating legacy applications to any Cloud Providers (AWS, Azure, Google Cloud).
The goal of Continuous Testing is to shift testing left to find defects earlier and release software faster. This can be achieved by integrating a set of open source functional and performance testing tools in the early stages of your software delivery lifecycle. There is one process that binds all application delivery stages together into one well-orchestrated machine: Continuous Testing. Continuous Testing is the conveyer belt between the Software Factory and production stages. Artifacts are m...
WebRTC is the future of browser-to-browser communications, and continues to make inroads into the traditional, difficult, plug-in web communications world. The 6th WebRTC Summit continues our tradition of delivering the latest and greatest presentations within the world of WebRTC. Topics include voice calling, video chat, P2P file sharing, and use cases that have already leveraged the power and convenience of WebRTC.
Cloud resources, although available in abundance, are inherently volatile. For transactional computing, like ERP and most enterprise software, this is a challenge as transactional integrity and data fidelity is paramount – making it a challenge to create cloud native applications while relying on RDBMS. In his session at 21st Cloud Expo, Claus Jepsen, Chief Architect and Head of Innovation Labs at Unit4, will explore that in order to create distributed and scalable solutions ensuring high availa...
For financial firms, the cloud is going to increasingly become a crucial part of dealing with customers over the next five years and beyond, particularly with the growing use and acceptance of virtual currencies. There are new data storage paradigms on the horizon that will deliver secure solutions for storing and moving sensitive financial data around the world without touching terrestrial networks. In his session at 20th Cloud Expo, Cliff Beek, President of Cloud Constellation Corporation, d...
Enterprise architects are increasingly adopting multi-cloud strategies as they seek to utilize existing data center assets, leverage the advantages of cloud computing and avoid cloud vendor lock-in. This requires a globally aware traffic management strategy that can monitor infrastructure health across data centers and end-user experience globally, while responding to control changes and system specification at the speed of today’s DevOps teams. In his session at 20th Cloud Expo, Josh Gray, Chie...
To get the most out of their data, successful companies are not focusing on queries and data lakes, they are actively integrating analytics into their operations with a data-first application development approach. Real-time adjustments to improve revenues, reduce costs, or mitigate risk rely on applications that minimize latency on a variety of data sources. Jack Norris reviews best practices to show how companies develop, deploy, and dynamically update these applications and how this data-first...
Intelligent Automation is now one of the key business imperatives for CIOs and CISOs impacting all areas of business today. In his session at 21st Cloud Expo, Brian Boeggeman, VP Alliances & Partnerships at Ayehu, will talk about how business value is created and delivered through intelligent automation to today’s enterprises. The open ecosystem platform approach toward Intelligent Automation that Ayehu delivers to the market is core to enabling the creation of the self-driving enterprise.
"We're here to tell the world about our cloud-scale infrastructure that we have at Juniper combined with the world-class security that we put into the cloud," explained Lisa Guess, VP of Systems Engineering at Juniper Networks, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
Historically, some banking activities such as trading have been relying heavily on analytics and cutting edge algorithmic tools. The coming of age of powerful data analytics solutions combined with the development of intelligent algorithms have created new opportunities for financial institutions. In his session at 20th Cloud Expo, Sebastien Meunier, Head of Digital for North America at Chappuis Halder & Co., discussed how these tools can be leveraged to develop a lasting competitive advantage ...
"We're a cybersecurity firm that specializes in engineering security solutions both at the software and hardware level. Security cannot be an after-the-fact afterthought, which is what it's become," stated Richard Blech, Chief Executive Officer at Secure Channels, in this SYS-CON.tv interview at @ThingsExpo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
In his session at 20th Cloud Expo, Mike Johnston, an infrastructure engineer at Supergiant.io, discussed how to use Kubernetes to set up a SaaS infrastructure for your business. Mike Johnston is an infrastructure engineer at Supergiant.io with over 12 years of experience designing, deploying, and maintaining server and workstation infrastructure at all scales. He has experience with brick and mortar data centers as well as cloud providers like Digital Ocean, Amazon Web Services, and Rackspace. H...
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
The question before companies today is not whether to become intelligent, it’s a question of how and how fast. The key is to adopt and deploy an intelligent application strategy while simultaneously preparing to scale that intelligence. In her session at 21st Cloud Expo, Sangeeta Chakraborty, Chief Customer Officer at Ayasdi, will provide a tactical framework to become a truly intelligent enterprise, including how to identify the right applications for AI, how to build a Center of Excellence to ...