Welcome!

@CloudExpo Authors: Yeshim Deniz, Pat Romanski, Zakia Bouachraoui, Liz McMillan, Elizabeth White

Related Topics: @CloudExpo, Machine Learning , @DXWorldExpo

@CloudExpo: Blog Post

How Data Science Is Transforming Cancer Treatment Scheduling | @CloudExpo #Cloud #BigData

A mathematical approach to improve infusion center wait times

How Data Science Is Transforming Cancer Treatment Scheduling
By Mohan Giridharadas, Founder & CEO, LeanTaaS iQueue

Anyone who has ever had the misfortune of dealing with a cancer diagnosis - either personally or as a caregiver to a friend or loved one - must have at some point wondered why they invariably had to wait well past their treatment appointment time, every time.

The root cause is that the healthcare scheduling system is broken. Healthcare providers are using a calculator, spreadsheets and standard electronic health record (EHR) templates to solve a math problem that demands a cluster of servers and data scientists to solve effectively.

Most EHRs use scheduling templates that have no real scheduling intelligence built in. In their efforts to be patient-centric, they typically subscribe to a first-come, first-served "hair salon" methodology. Even the best among them use gut-based rules of thumb to accommodate patient and staff needs for a particular appointment slot. The result is, in effect, the opposite of a patient-centric situation - a domino effect of longer wait times and unhappy patients and doctors.

Traditional approaches just don't hold water ...
Let's take a 35-chair infusion center that operates eight hours per day treating five types of appointments - 1 hour, 2 hours, 3-5 hours, 6-8 hours, or 9 or more hours. Four sets of patients can start their treatment at 10-minute intervals. That's 256 possible start times or "slots" per day. The number of ways those patients can be accommodated is a number with over 100 zeros behind it. By comparison, if you were to use 1-gallon milk jugs to hold all of the oceans' water, the number of jugs needed would have 40 zeros behind it. The chance of stumbling upon the most effective scheduling arrangement using the same approach as your neighborhood hair salon or oil change shop is, for practical purposes, nonexistent. Here's what the math looks like:

With those odds, it is clear that simple spreadsheets or traditional EHR approaches can never create an optimal solution for scheduling appointments.

Now, compound the scope of possible appointments with the reality of hospital variables, such as practitioner schedules, staff changes, patterns of demand, equipment maintenance, room availability, lab results and clinical trial events, and you can see why this becomes a very difficult formula to solve with simple math - and why you continue to wait, wait and wait some more. Add to that patient preference - most patients want appointments in the 10 a.m. to 2 p.m. range - and you end up with a schedule full of more holes than a block of Swiss cheese.

... But new approaches using data science can help lose the "wait"
Inspired by the likes of Toyota and just-in-time lean manufacturing practices, data science and mathematics are changing the face of healthcare scheduling and, in effect, making healthcare more accessible to more patients.

By taking a holistic review, data scientists are mining all scheduling patterns and possibilities specific to a center, as well as considering operational constraints across patient demand, practitioner and staffing schedules, and capital asset availability. From there, an algorithm is created that optimizes a schedule for the center to serve patients more uniformly throughout the day, versus the peaks and valleys of traditional scheduling systems. The end result promises more patients served, reduced cost of service, optimized equipment and facility utilization, and a whole lot less sitting in the waiting room.

This mathematical approach to infusion center scheduling is already delivering impressive results; providers like Stanford Health Care, UCHealth, NewYork-Presbyterian, Fox Chase Cancer Center, UCSF, the Huntsman Cancer Institute and many others are seeing wait times decreased by as much as 55 percent during peak hours. Put that in real-world terms: A one-hour wait becomes 27 minutes. Who wouldn't want a half-hour of waiting room time back?

As first published in MedCity News.

###

Mohan Giridharadas is an accomplished expert in lean methodologies. During his 18-year career at McKinsey & Company (where he was a senior partner/director for six years), he co-created the lean service operations practice and ran the North American lean manufacturing and service operations practices and the Asia-Pacific operations practice. He has helped numerous Fortune 500 companies drive operational efficiency with lean practices. As the founder and CEO of LeanTaaS (a lean and predictive analytics company), Mohan has worked closely with dozens of leading healthcare institutions including Stanford Health Care, UCHealth, UCSF, Wake Forest and more. Mohan holds a B.Tech from IIT Bombay, MS in Computer Science from Georgia Institute of Technology and an MBA from Stanford GSB. He is on the faculty of Continuing Education at Stanford University and UC Berkeley Haas School of Business and has been named by Becker's Hospital Review as one of the top entrepreneurs innovating in healthcare.

For more information on LeanTaaS iQueue, please visit https://iqueue.com/ and follow the company on Twitter https://twitter.com/LeanTaaS @LeanTaaS, Facebook at https://www.facebook.com/LeanTaaS and LinkedIn at https://www.linkedin.com/company/leantaas

More Stories By LeanTaaS Blog

LeanTaaS is a Silicon Valley software company whose offerings rely on advanced data science to significantly improve the operational performance of hospitals and clinics. Using LeanTaaS iQueue in conjunction with their existing EHR's, healthcare institutions are developing optimized schedules that are tailored to each site and can rapidly reduce patient wait times and operating costs while increasing patient access and satisfaction, care provider satisfaction, and asset utilization.

CloudEXPO Stories
Excitement and interest in APIs has skyrocketed in recent years. However, if you ask a room full of IT professionals "What is an API", you will get a wide array of answers. There exists a wide knowledge gap between API experts and those that have a general idea of what they are, but are unsure of what they have been for in the past, what they look like now, and how they can be used to expand your business in the future. In this session John will cover what the history of APIs, what an API looks like now, how APIs are used today, and why they are important to your entire organization and digital transformation. John will also cover how you can use APIs to lead your digital transformation and uncover new business opportunities within your organization.
@DevOpsSummit at Cloud Expo, taking place November 12-13 in New York City, NY, is co-located with 22nd international CloudEXPO | first international DXWorldEXPO and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essential.
DevOps with IBMz? You heard right. Maybe you're wondering what a developer can do to speed up the entire development cycle--coding, testing, source code management, and deployment-? In this session you will learn about how to integrate z application assets into a DevOps pipeline using familiar tools like Jenkins and UrbanCode Deploy, plus z/OSMF workflows, all of which can increase deployment speeds while simultaneously improving reliability. You will also learn how to provision mainframe system as cloud-like service.
CloudEXPO New York 2018, colocated with DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI, Machine Learning and WebRTC to one location.
The best way to leverage your Cloud Expo presence as a sponsor and exhibitor is to plan your news announcements around our events. The press covering Cloud Expo and @ThingsExpo will have access to these releases and will amplify your news announcements. More than two dozen Cloud companies either set deals at our shows or have announced their mergers and acquisitions at Cloud Expo. Product announcements during our show provide your company with the most reach through our targeted audiences.